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Abstract
In the paper, a generalized essential boundary condition sensitivity analysis based implementation of FE2 and mesh-in-
element (MIEL) multi-scale methods is derived as an alternative to standard implementations of multi-scale analysis, where
the calculation of Schur complement of the microscopic tangent matrix is needed for bridging the scales. The paper presents
a unified approach to the development of an arbitrary MIEL or FE2 computational scheme for an arbitrary path-dependent
material model. Implementation is based on efficient first and second order analytical sensitivity analysis, for which automatic-
differentiation-based formulation of essential boundary condition sensitivity analysis is derived. A fully consistently linearized
two-level path-following algorithm is introduced as a solution algorithm for the multi-scale modeling. Sensitivity analysis
allows each macro step to be followed by an arbitrary number of micro substeps while retaining quadratic convergence of the
overall solution algorithm.
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List of symbols
�M Macro level quantity
�m Micro level quantity
�k,�k+1 Index of the last and the current macro step
�n,�n+1 Index of the last and the current micro step
�s Index of micro step at the end of the last

macro step
�(r) Index of micro problem
φ set of variables calculated at the selected

macro element and transferred to the corre-
sponding micro problem (also sensitivity
parameters)

S Set of variables calculated at the selected
micro problem and returned to the corre-
sponding macro element

φMe,SMe Variables φ and S collected for all micro
problems associated with the selected
macro element
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λM , λm Macro and micro level parameters
RM ,KM Macro level residual and tangent matrix
Rm,Km Micro level residual and tangent matrix
pM ≡ pM k+1 Macro level nodal unknowns (e.g. nodal

displacements)
pm ≡ pmn+1 Micro level nodal unknowns (e.g. nodal

displacements)
p̄m = p̄mn+1 Micro level nodal unknowns with pre-

scribed essential boundary condition
�e Quantities associated with the selected

macro or micro element (e.g. RMe,Rme,

pme, . . .)
hmg ≡ hmgn+1 Set of integration point unknowns at micro

level (e.g. plastic state variables)
Qmg Set of integration point equations at micro

level
hm ≡ hmn+1 Set of unknowns at all integration points

of selected micro problem
FM ,Fm Macro and micro deformation gradients
PM ,Pm Macro and micro first Piola–Kirchhof

stress tensors
A:B Inner product (A:B = ∑

i j Ai j Bi j , A :
∂B
∂p =∑i j Ai j

∂Bi j
∂p )
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δ̂ f (a)
δ̂a

Computational derivative (the result of
automatic differentiation)

When the selected variable has no index it always refers to
the current value of the selected variable, e.g. pM ≡ pM k+1,
pm ≡ pmn+1 etc.

1 Introduction

Multi-scale methods are a growing trend in computational
mechanics, especially with increasing capabilities of com-
puters. Multi-scale methods originate from the demand to
accurately model heterogeneous materials, like fiber rein-
forced composites, particle reinforced adhesives, concrete
and even metal [4,8,17]. The goal of multi-scale modeling
is to design a combined macroscopic–microscopic compu-
tational algorithm that is numerically more efficient than
solving of the full microscopic model directly. At the same
time, it gives us the information we need with the desired
accuracy. For the overview of multi-scale methods reader
is referred to [1,3,6,30]. The use of different kinds of multi-
scale methods is limited by the characteristics of the problem
to be solved. Roughly, we can separate multi-scale methods
in two groups: on methods that are based on homogenization
techniques and on domain decomposition methods.

A basic hypothesis of homogenization techniques is
a complete separation of scales, where the size of het-
erogeneities is assumed to be infinitely smaller than the
structural dimensions. Homogenized material behavior of
representative volume elements (RVEs), which contains
microstructure, is considered to be representative of the
entire or part of the structure. Standard two-level finite ele-
ment homogenization approach (FE2) described in [16,29] is
appropriate for the problems where scales are separated far
enough and are only weakly coupled, see [2,5,23,27]. If the
difference between two scales is finite, in the region of high
gradients or in the case of localization [25] the FE2 approach
fails. Then some sort of domain decomposition method can
be applied. One such method is substructuring method, now
more commonly named mesh-in-element (MIEL) scheme,
which was described in [9].

Within the standard implementation of nonlinear multi-
scale methods, only the macro scale is parametrized by the
load factor. Consequently, each macro step is followed by
exactly one step at the micro level and a path-following algo-
rithm is applied only at the global level. The first aim of
this paper was to develop a nonlinear multi-scale computa-
tional scheme with two interacting path-following methods
at two levels. An algorithm will be derived for consistent
parametrization of both macro and micro problems leading
to a two-level path-following algorithm. For the purpose of

convergence comparison, one method from each group was
implemented, FE2 and MIEL.

In the literature, a lot of attention has been paid to the
computation of macroscopic tangent as an essential and
numerically demanding part of any multi-scale simulation.
The possibilities vary from expensive and inaccurate but
general finite difference approximation of macroscopic tan-
gent, to various ways how to derive corresponding analytical
expressions (for discussion on methods see e.g. [28]). One of
the alternatives is also standard sensitivity analysis of cou-
pled path-dependent problems, as introduced in [11,21]. In
the primal analysis, the response of the system is evaluated,
whereas in sensitivity analysis the derivatives of the response,
e.g. displacements, strains, stresses or energy, with respect to
arbitrary design parameter are sought. For the automation of
the multi-scale methods, sensitivity analysis with respect to
parameters used to define micro level boundary conditions is
needed. It will be shown that the consistent linearization of
the two-level path-following algorithm requires the imple-
mentation of relative sensitivity analysis instead of a full one
and that a second order sensitivity analysis is also needed.

The second aim of the paper is to present advantages of
analytical essential boundary condition sensitivity analysis
based implementation in comparison with the classical ways
of implementing multi-scale methods based on the calcu-
lation of Schur complement of micro tangent matrix (see
e.g. [16,22,28] for FE2 method and [9] for MIEL method).
This is especially important for path-dependent problems
such as finite strain plasticity, where consistent linearization
is of high importance. It will be shown that for theMIEL type
of methods the analytical second order sensitivity analysis
is numerically superior with respect to Schur complement
implementation.

Another motivation was to create a computational envi-
ronment, where the multi-scale program code is auto-
matically derived and various types of multi-scale and
single-scale approaches can be freely mixed while retaining
quadratic convergence of the Newton–Raphson procedure.
To achieve the goal, the introduced method uses an advanced
feature of software tool AceGen [12]. AceGen is an auto-
matic code generator, where automatic differentiation tech-
nique [7], automatic code optimization and code generation
are combined with computer algebra system Mathemat-
ica [20]. The size of the code is reduced through control of
expression swell [10]. The automatic-differentiation-based
(ADB, [11]) formulation enables unification and automation
of various multi-scale approaches for arbitrary nonlinear,
path-dependent material models (e.g. general finite strain
plasticity). A short overview of multi-scale methods based
on first and second order boundary condition sensitivity
analysis for the linear case was already given in [15]. Numer-
ical simulations were performed with AceFEM numerical
environment [14] that has built-in support for numerically
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efficient first and second order analytical sensitivity analy-
sis.

The paper is organized as follows. Micro problem formu-
lation based on finite strain elasto-plastic model is briefly
described in Sect. 1.1 as a basis for all subsequently derived
multi-scale methods. After an introduction to automatic dif-
ferentiation based notation (ADB) in Sect. 1.2, a generalized
two-level path-following multi-scale algorithm is derived in
Sect. 2. The basis for the multi-scale formulations is pri-
mal and sensitivity analysis of the micro problem as given
in Sect. 3. MIEL and FE2 multi-scale methods are then
described in detail, focusing on their implementation in
Sect. 4, followed by numerical examples presented in Sect. 5.

1.1 Micro problem definition

At the micro level we will consider finite element formu-
lation of rate-independent nonlinear problems in solid and
structural mechanics, such as an arbitrary finite strain rate-
independent elasto-plastic material model. Here, only essen-
tial equations are presented; for more details see e.g. [26].
Finite strain, isotropic, elasto-plastic model is defined by its
elastic strain energy function, plastic evolution equations and
the method for time integration of evolution equations. Some
of the possible variants are presented in [13]. The actualmate-
rial model used to run numerical examples is summarized in
Box 1. However, all the methods presented are general, inde-
pendent of the specific material model.

be = FmC−1
p F−T

m , Jbe = det be (1)

W = 1

2
μ(tr be − 3 − log Jbe ) + 1

4
λ(Jbe − 1 − log Jbe ) (2)

τ = 2be
∂W

∂be
, τ ′ = τ − 1

3
(tr τ )I (3)

φ =
(
3

2
τ ′ · τ ′

)1/2

− (σy0 + Khγ + R∞(1 − exp(−δ γ ))
)

(4)

Z = Fm C−1
p − exp(−2(γ − γn)

∂φ

∂τ
)Fm C−1

pn = 0 (5)

Qmg = {Z11, Z22, Z33, Z12, Z13, Z23, φ} = 0 (6)

hmg = {C−1
p11,C

−1
p22,C

−1
p33,C

−1
p12,C

−1
p13,C

−1
p23, γ } (7)

hmgn = {C−1
pn11,C

−1
pn22,C

−1
pn33,C

−1
pn12,C

−1
pn13,C

−1
pn23, γn} (8)

Box 1. Micro problem material model

Formulation is based on multiplicative split of micro
deformation gradient Fm , the components of an inverse right
Cauchy plastic strain tensor C−1

p as plastic state variables,
elastic left Cauchy strain tensor be (1), Neo-Hookean strain
energy function W (be) (2) and Mises yield function with
exponential hardening law (4). Backward Euler is combined

with the exponential map for a stable, volume conserving
integration of evolution equations [26]. Discretized evolution
equations (5), together with yield condition φ = 0, form a set
of algebraic equations Qmg (6) for a set hmg (7) of unknown
components of plastic strain tensorC−1

p and plasticmultiplier

γ . C−1
pn and γn are values of plastic strain tensor and plastic

multiplier at the end of the last load step. The dependency of
Eq. (6) on the values of variables at the end of the last load
step (hmgn) makes the whole problem path-dependent.

Standard weak form of equilibrium equations is then writ-
ten as

∫

�m

Pm · δFm dV −
∫

∂�m

t · δum dS = 0 (9)

where first Piola–Kirchhof stress tensor Pm can be obtained
from the elastic strain energy W by Pm = ∂W/∂Fm . After
finite element discretization of deformation gradient Fm =
Fm
(
pme

)
, where pme is a set of nodal degrees of freedom

of eth micro element at the current load step. The variation
δFm = ∂Fm/∂pme δpme leads from (9) together with the
standard Gauss integration of weak form and standard pro-
cedure of assembly of element contributions (denoted here
withA operator) to a set of algebraic equilibrium equations
(10). Equations are at each Gauss point coupled with an
additional set of equationsQmg (6). The result is the follow-
ing integration point coupled system of nonlinear algebraic
equations

Rm(pm,hm) =
nme

A
e=1

Rme + Rext
m (10)

=
nme

A
e=1

∑

g∈Ge

wgp Rmg(pme,hmg) + Rext
m = 0,

Qmg(pme,hmg,hmgn) = 0 : g = 1, 2, . . . ntg (11)

where Rme is contribution of eth element to global residual
Rm and Rext

m is a vector of external forces. pm denotes a set
of micro level nodal unknowns, hm = ⋃ntg

g hmg is a set of
unknowns of allGauss point problems.Ge is a set ofGauss
points of eth element and wgp is Gauss point weight. The
Gauss point contribution Rmg to the element residual Rme

leads from (9) to

Rmg = JξPm : ∂Fm

∂pme
(12)

where Jξ stands for a standard Jacobian of the transformation
from the reference coordinate system to the global coordinate
system and Pm : ∂Fm

∂pme
=∑i j Pm i j

∂Fm i j
∂pme

.
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1.2 Automatic differentiation based (ADB) notation

The automatic differentiation (AD) technique can be used
for the evaluation of the exact derivatives of any arbitrary
complex function defined by an algorithm via chain rule and
represents an alternative solution to the numerical differentia-
tion and symbolic differentiation. The result ofADprocedure
is called “computational derivative” and is written here as
δ̂ f (a)

δ̂a
. The AD operator δ̂ f (a)

δ̂a
represents derivative of a func-

tion f (a) with respect to variables a. The operator δ̂ f (a)
δ̂a

has
a dual purpose to indicate the mathematical operation of dif-
ferentiation as well as to indicate that the AD technique is
used to obtain the required quantity. If, for example, alter-
native or additional dependencies for a set of intermediate
variables b have to be considered for differentiation, then the
AD exception is indicated by the following formalism

δ̂ f (a,b)

δ̂a

∣
∣
∣
∣
∣ Db
Da=M

= ∂ f

∂a
+ ∂ f

∂b
M , (13)

which indicates that during the AD procedure, the total
derivatives of variables bwith respect to variables a are set to
be equal to matrixM. b in (13) my or may not be algorithmi-
cally a function of a. When b is algorithmically function of
a then (13) defines that the true derivatives ∂b

∂a are neglected
and replaced by a matrixM. When b is not algorithmically a
function of a then (13) introduces from the algorithmic point
of view an artificial dependency between a and b. The auto-
matic differentiation exceptions are the basis for the ADB
formulation of computational problem.

For example, the Gauss point residual Rmg is defined
by Eq. (12). However, form (12) is not numerically efficient
from the automatic differentiation point of view.Numerically
efficient ADB form of (12) is derived as

Rmg = Jξ Pm : ∂Fm

∂pme

= Jξ
δ̂W

δ̂Fm

∣
∣
∣
∣
∣ Dhmg
DFm

=0

: δ̂Fm

δ̂pme

= Jξ
δ̂W

δ̂pme

∣
∣
∣
∣
∣ Dhmg
DFm

=0

(14)

As a side effect of the iterative solution of Gauss-point equa-
tions (6), there exist an implicit (algorithmic) dependency of

hmg on Fm . The AD exception Dhmg
DFm

= 0 in (14) hides this

dependency from automatic differentiation procedure and
ensures correct evaluation of the weak form equations. In
(14) we start with the scalar and make only one call to AD
procedure, which is optimal for the backward mode imple-
mentation of automatic differentiation as shown in [11].

The introduced ADB notation is abstract, thus any suf-
ficiently sophisticated software for automatic differentiation

can be used for the actual implementation. TheADBnotation
can be directly translated to the AceGen input and is part of
automatic generation of numerically efficient program codes.
Details of themethod and of the corresponding softwareAce-
Gen together with numerous examples of AceGen inputs can
be found in [10–12,14]. The actual AceGen and AceFEM
inputs are for the complex multi-scale problems addressed
in the paper too lengthy to be included in the paper. How-
ever, they are freely available at http://symech.fgg.uni-lj.si/
Examples/MultiScale.pdf, in a form of Mathematica note-
book at http://symech.fgg.uni-lj.si/Examples/MultiScale.nb
or as a part of software documentation available at http://
symech.fgg.uni-lj.si/Download.htm.

2 Generalized two-level path-following
multi-scale algorithm

For highly nonlinear problems in general the solution can-
not be achieved in one step. More efficient procedures can
be derived when the resulting system of algebraic equa-
tions can be naturally parametrized. Various path-following
algorithms, such as constant load-stepping, adaptive load
stepping or arc-length methods, can then be applied to solve
the nonlinear problem. Within the standard implementation
of multi-scale methods only the macro scale is parametrized.
Consequently, each macro step is followed by exactly one
step at the micro level and a path-following algorithm is
applied only at the global level. Here, an algorithm is derived
for consistent parametrization of bothmacro andmicro prob-
lems leading to two-level path-following algorithm. For the
sake of simplicity, the two-level constant load stepping algo-
rithm is derived. However, it can be easily extended to other
path-following approaches.

Let k be the index of the last calculated macro load step
and k + 1 the current macro load step, as shown in Fig. 1.
Furthermore, let n be the index of the last converged micro
load step, n + 1 the current micro load step, s the index
of the micro load step at the end of the last converged
macro load step, nm the number of micro level steps within
the macro level step and s + nm the index of the micro
load step at the end of the macro load step as presented in
Fig. 1.

As an example, problems in solidmechanics and nonlinear
structural mechanics subjected to quasi-static proportional
load are frequently parametrized by introducing loading
parameter λM . λM will be used to parametrize macro prob-
lem. The final value of parameter λM is usually determined
by the problem at hand, e.g. as total given load factor λ̄M . In
this case the total load is split into nM macro steps. The
finite element discretization of macro level then leads to
a set of nonlinear equations RM at the current load level
λM = λM k+1
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Fig. 1 Generalized two-level
path-following, multi-scale
algorithm

RM

(

pM ,

nMe⋃

e=1

SMe, λM

)

=
nMe

A
e=1

RMe(pMe,SMe) − λM Rref
M = 0 (15)

where RMe denotes the contribution of internal forces of eth
macro element to the nodal force vector and Rref

M is the ref-
erence load vector associated with the pattern of the applied
nodal forces. pM represents a set of nodal unknowns of the
problem at macro level and SMe is a set of variables trans-
ferred from the micro level problems to eth macro element.
SMe is composed of contributions of one or several micro
problems. Thus, SMe = ⋃

r∈Me
S(r), where S(r) is the con-

tribution of the r th micro problem and Me is a subset of
micro problems that contribute to the eth macro element.
For a general scheme it is irrelevant what the data represents
physically.

Within various multi-scale methods the coupling of the
scales canbedone in severalways.Thepaper addressesmeth-
ods where micro–macro coupling is achieved by expressing
the essential boundary conditions of micro level problem as
a function of data calculated at macro level. Let p̄m be a
set of micro problem nodal unknowns with imposed homo-
geneous essential (Dirichlet) boundary conditions, φ a set
of variables calculated at macro level for the current macro
load level λM on which a selected micro problem depends
and p̄m(φ) a function such that at the and of the macro
step p̄m = p̄m(φ). φ is composed of components of macro
deformation gradient in the case of FE2 method and of com-
ponents of nodal displacements of macro element in the case
of MIEL method. The actual form of p̄m(φ) depends on
the multi-scale scheme and is given in the following sec-
tions.

Let λm be a current value of a micro level parameter. At
the end of the last macro step, we additionally define λm s as a
value of a micro level parameter and p̄m s as a value of nodal

unknowns with imposed essential boundary conditions. Lin-
ear interpolation of p̄m within the macro step then leads to
the following parametrization of micro level problem

p̄m(φ, λm) = p̄m s + (λm − λm s)(p̄m(φ) − p̄m s). (16)

The total increment 
p̄m of the micro essential boundary
conditions within the macro load step is defined by


p̄m = p̄m(φ) − p̄m s . (17)

The micro level parameter introduced with (16) ensures
continuous parametrization ofmicro problem and has the fol-
lowing properties for the kthmicro step: (λm−λm s) ∈ [0, 1],
λm s = k and λm = k + 1 at the end of macro step. With the
introduction of parameter λm , the solution of micro problem
within the kth macro step is achieved in nm micro steps with
associated solution vectors.

The finite element discretization at micro level leads from
(10) to the following integration point coupled system of
nonlinear algebraic equations for the chosen micro problem

Rm(pm,hm, p̄m(φ, λm))

=
nme

A
e=1

∑

g∈Ge

wgp Rmg(pme(φ, λm),hmg) + Rext
m = 0

(18)

Qmg(pme(φ, λm),hmg,hmgn) = 0 : g = 1, 2, . . . ntg (19)

where equilibrium equationsRm are coupledwith discretized
evolution equations at the Gauss point level Qmg . A stan-
dard two level Newton- - Raphson method can be used to
solve the resulting Gauss point coupled system of algebraic
equations for the unknown pm and hm , as described in [11].

In order to have quadratically convergentmulti-scale solu-
tion algorithm, we also need consistently linearized macro
equilibrium equations (15). The linearization of (15) leads to
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KM =
nMe

A
e=1

KMe

=
nMe

A
e=1

(
∂RMe

∂pMe
+ ∂RMe

∂SMe

DSMe

DφMe

∂φMe

∂pMe

)

(20)

where φMe =⋃r∈Me
φ(r) is composed of variables calcu-

lated at the eth macro element and transferred to a subset of
micro problemsMe that effects the eth macro element. Par-
tial derivatives in (20) are explicit and can be easily derived
analytically for a specific multi-scale scheme.

Derivation of total derivative DSMe
DφMe

= ⋃
r∈Me

(
DS
Dφ

)(r)

has to be done at micro level. As shown later on examples,
in general S depends on pm and hm as well as on their first
derivativesDpm/Dφ andDhm/Dφ. Thus, a total derivative
of S leads to

DS
Dφ

= ∂S
∂pm

Dpm
Dφ

+ ∂S
∂hm

Dhm
Dφ

+ ∂S
∂(Dpm/Dφ)

D2pm
Dφ2

+ ∂S
∂(Dhm/Dφ)

D2hm
Dφ2 (21)

where first order derivatives Dpm/Dφ, Dhm/Dφ and sec-
ond order derivatives D2pm/Dφ2, D2hm/Dφ2 are implicit
and require differentiation of complete path-following algo-
rithm for the solution of selected micro problem. This can
be done using analytical sensitivity analysis procedures,
such as described in [11]. φ represents input data for the
selectedmicro level simulation and is used to calculate essen-
tial boundary conditions (16). Thus, for the evaluation of
implicit derivatives, a boundary condition sensitivity analy-
sis is neededwith components ofφ as sensitivity parameters.

The solution of a path-dependent micro problem, in gen-
eral depends on all variables transferred from the macro
level to the micro level in all macro steps. Consequently,
a complete set of sensitivity parameters of the selected micro
problemwould be composed of all variables transferred from
the selected macro element to the selected micro problem.
Sensitivity analysis for a large number of parameters requires
significant amount of memory as well as computation time.
However, it is not actually needed. The variables transferred
in kth step (φ = φk+1) affect the selected micro problem
only from the micro step at the beginning of the macro step
(micro step with the index sth) and implicit derivatives with
respect to φ are not needed any more after the completion
of the macro step. Consequently,

Dpm i

Dφ
= 0,

Dhm i

Dφ
= 0,

D2pm i

Dφ2 = 0,
D2hm i

Dφ2 = 0 : ∀ i ≤ s, (22)

and implicit derivatives with respect to φ do not appear in
the macro problem after the completion of the macro step.
Thus, at any given time only a set of sensitivity parametersφ

that belongs to the current macro step has to be considered,
provided that (22) holds. Since Qmg depends only on hmgn ,
it is sufficient for (22) to hold to set

Dhm s

Dφ
= 0 and

D2hm s

Dφ2 = 0 (23)

at the start of each micro problem increment (at the sth micro
step).

2.1 Two-level path-following algorithm

The algorithm that summarizes the above considerations is
presented in Box 2. First, the micro level equations (18) (19)
are solved for unknown pm and hm at fixed pM with the
use of Newton method, which is also applied to solve the
macro equilibrium equation (15) in an outer loop leading to
a nested iteration–subiteration solution scheme for unknown
pM , pm and hm . For the sake of simplicity, the algorithm is
written for the constant time stepping with nM macro steps
and nm micro steps per macro step. However, it can be easily
extended to an arbitrary adaptive time stepping scheme. It is
assumed here that the micro problem is path-dependent, thus
the state of all micro problems has to be stored somewhere
at the end of the solution of each macro step and restored at
the beginning of each macro iteration.

The basic idea of this paper is that any FE code that sup-
ports first and second order sensitivity analysis can be turned
into a fully consistent, numerically efficient, quadratically
convergent nonlinear multi-scale code with minimal or even
without any additional coding at the level of micro finite
elements. Of course, one can use finite difference approxi-
mation to evaluatemacro tangentmodulusKM . However, the
resulting code is numerically efficient and inexact tangent can
affect the rate of convergence of iterative procedure. In any
case, one has to write additional code for data management,
solution of the macro problem and for parallelization of the
multi-scale algorithm. Let us assume that the code supports
primal, first and second order sensitivity analysis. It is then
needed for the implementation of the particular multi-scale
scheme to define the following quantities and expressions:

• micro problem sensitivity parameters as a function of
macro element unknowns (φ(pMe)),

• boundary conditions of micro problem as a function of
sensitivity parameters (p̄m(φ, λm)),

• derivatives of boundary conditions with respect to sensi-
tivity parameters ( Dp̄m (φ,λm )

Dφ ),
• micro level variables that are passed to macro level (S),
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• total derivative of micro level variables with respect to
sensitivity parameters (DS/Dφ),

• macro element residual vector (RMe(pMe,SMe)),
• macro element tangent matrix (KMe(pMe,SMe,

DSMe/DφMe)).

Initialization: λM ← 0; 
λM = λ̄M/nM ; pM k ← 0; pM ← 0;
foreach micro problem set pm s ← 0; hm s ← 0; p̄m s ← 0;
for i = 1 to nM do macro steps

λM ← λM + 
λM
repeat Newton iterations at macro level

foreach macro element evaluate φMe
foreach micro problem do

pmn ← pm s ;hmn ← hm s // initialize
primal data

Dhmn/Dφ ← 0;D2hmn/Dφ2 ← 0// delete
sensitivity history to fulfill
(22)

λm ← i − 1; 
λm = 1/nm ; 
p̄m ← p̄m(φ) − p̄m s ;
for j = 1 to nm do micro steps

λm ← λm + 
λm ; p̄m ← p̄m + 
λm 
p̄m ;
solve one micro step

Rm(pm ,hm) = 0;
∀g : Qmg(pme,hmg,hmgn) = 0
// solve coupled primal
problem for unknown pm ,hm

Dpm/Dφ; Dhm/Dφ // first order
sensitivity problem

D2pm/Dφ2; D2hm/Dφ2 // second
order sensitivity problem if
needed

pmn ← pm ; hmn ← hm // update primal
data

Dpmn/Dφ ← Dpm/Dφ . . . D2hmn/Dφ2 ←
D2hm/Dφ2 // update all
sensitivity data

evaluate and store S and DS/Dφ

Newton update at macro level

RM =AnMe

e
RMe(pMe,SMe);

KM =AnMe

e
KMe(pMe,SMe, DSMe/DφMe);

pM ← pM − K−1
M RM

until pM has converged
pM k ← pM ;
foreach micro problem set

pm s ← pm; hm s ← hm; p̄m s ← p̄m ; // update
and store macro and micro data

Box 2. Two-level path-following multi-scale algorithm

3 Primal and sensitivity analysis of micro
problem

The general procedures for primal and first order sensitiv-
ity analysis are for an arbitrary problem presented in detail

in [11]. Here, we focus on essential boundary condition sen-
sitivity analysis that is needed for the implementation of
multi-scale methods. For this purpose, first order essential
boundary condition sensitivity analysis is extended to sec-
ond order essential boundary condition sensitivity analysis.

3.1 Solution and automation of primal problem

The primal problem at micro level (18), (19) represents a
system of Gauss point coupled nonlinear algebraic equa-
tions that can be solved using standard nested iteration–
subiteration Newton–Raphson iterative procedure (see
e.g. [11]). First, the Gauss point equation (19) is solved for
hmg at fixed pme with the use of Newton method, which is
also applied to solve the equilibrium equation (18) in an outer
loop for unknown pm . The tangent operator for the inner loop
KQ is given by

KQ = δ̂Qmg

δ̂hmg
(24)

and consistent micro tangent matrix Km is written as

Km =
nme

A
e=1

∑

g∈Ge

wgp
δ̂Rmg

δ̂pme

∣
∣
∣
∣
∣ Dhmg
Dpme

=−K−1
Q

δ̂Qmg
δ̂pme

. (25)

Evaluation of the micro tangent matrix (25) requires proper
consideration of the implicit dependency hmg(pme) intro-
duced by the local iterative procedure. The missing implicit

derivative ∂hmg
∂pme

= −K−1
Q

∂Qmg
∂pme

can be easily obtained from

(19) and introduced as an AD exception in (25) (for more
details see [11]).

3.2 Solution and automation of sensitivity problem

For the essential boundary condition sensitivity analysis we
define the residuals and the vectors of unknowns in (18) and
(19) as a function of sensitivity parameters φ by

Rm(pm(φ),hm(φ), p̄m(φ, λm)) (26)

=
nme

A
e=1

∑

g∈Ge

wgp Rmg(p̌me(φ), p̄me(φ, λm),hmg(φ))

= 0,

Qmg(p̌me(φ), p̄me(φ, λm),hmg(φ),hmgn(φ)) = 0 :
g = 1, 2, . . . ntg. (27)

where p̄m(φ, λm) is a set of nodal DOF with prescribed
essential boundary conditions defined by (16).
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At the level of individual finite element, the set of nodal
unknowns pme = p̌me ∪ p̄me includes degrees of freedom
with prescribed essential boundary condition p̄me and true
degrees of freedom p̌me, because they are at the element
level indistinguishable. The first order sensitivity problem
can be obtained from the primal problem by differentiating
equations (26) and (27)with respect to sensitivity parameters,
which results in

DRm

DφI
=

nme

A
e=1

∑

g∈Ge

wgp (28)

(
∂Rmg

∂p̌me

Dp̌me

DφI
+ ∂Rmg

∂p̄me

Dp̄me

DφI
+ ∂Rmg

∂hmg

Dhmg

DφI

)

= 0,

DQmg

DφI
= ∂Qmg

∂p̌me

Dp̌me

DφI
+ ∂Qmg

∂p̄me

Dp̄me

DφI
+ ∂Qmg

∂hmg

Dhmg

DφI

+ ∂Qmg

∂hmgn

Dhmgn

DφI
= 0. (29)

To calculate Dpm
DφI

, the sensitivities Dhmg
DφI

are expressed

from Eq. (29) and inserted into Eq. (28). After rearrange-
ment, in which the terms that contain the unknown sensitivity
Dpm
DφI

are collected together, a system of linear equations is
obtained

Km
Dpm
DφI

= −I R̃m, I R̃m =
nme

A
e=1

∑

g∈Ge

wgp
I R̃mg. (30)

Tangent matrix Km is already evaluated and factorized from
the primal problem. Therefore, only vector I R̃m on the right-
hand side of Eq. (30) has to be calculated in order to obtain
the resulting system of linear equations. This vector is called
independent first-order sensitivity pseudo-load vector. After
obtaining Dpm

DφI
as the solution of (30), the obtained values

are inserted into Eq. (29) and Dhmg
DφI

, g = 1, 2, . . . ntg can be
expressed. Corresponding expressions are

IZg = −K−1
Q

(
∂Qmg

∂p̄me

Dp̄me

DφI
+ ∂Qmg

∂hmgn

Dhmgn

DφI

)

(31)

I R̃mg = ∂Rmg

∂p̄me

Dp̄me

DφI
+ ∂Rmg

∂hmg

IZg (32)

Dhmg

DφI
= IZg − K−1

Q

(
∂Qmg

∂p̌me

Dp̌me

DφI

)

(33)

where IZg is an additional auxiliary variable introduced to
increase numerical efficiency. It can be evaluated during the
evaluation of I R̃mg , stored in memory and used later for the
evaluation of Dhmg/DφI .

Function p̄m(φ, λm) can be arbitrary complex and, in
general, cannot be input data of the finite element analy-
sis. However, it is not the relation p̄m(φ, λm) itself that
is needed within the sensitivity analysis, but its first and
second derivatives. Let φI and φJ be an arbitrary essen-
tial boundary condition sensitivity parameters. The rate of
change of essential boundary conditions IV = ∂p̄m (φ,λm )

∂φI

and I JV = ∂2p̄m (φ,λm )

∂φI ∂φJ
are called first and second order

essential boundary condition velocity fields. The values of
first and second order essential boundary condition velocity
fields at the nodes of eth element are defined by

IVe =
{

∂ p̄me i
∂φI

if pmei ∈ p̄me

0 if pmei ∈ p̌me

: i = 1, . . . , n p, (34)

I JVe =
{

∂2 p̄me i
∂φI ∂φJ

if pmei ∈ p̄me

0 if pmei ∈ p̌me

: i = 1, . . . , n p (35)

where n p is the total number of element nodal DOFs. The
velocity field is zero for the true degrees of freedom. Thus,
the proper definition of element velocity fields is sufficient
to make the difference between the degrees of freedom with
prescribed essential boundary condition and true degrees of
freedom at the finite element level.

The actual analytical expressions for (32), (31) and (33)
are rather lengthy, but they can be obtained automatically
using the automatic differentiation. For this purpose, an auto-
matic differentiation based notation or ADB notation of the
terms is needed. A general ADB notation of first order terms
follows from (32), (31) and (33) where all implicit deriva-
tives are replaced by appropriate AD exceptions and leads
to

IZg = − K−1
Q

δ̂Qmg

δ̂φI

∣
∣
∣
∣
∣ Dpme
DφI

=IVe,
Dhmgn
DφI

=IHn
g,

(36)

I R̃mg = δ̂Rmg

δ̂φI

∣
∣
∣
∣
∣ Dpme
DφI

=IVe,
Dhmg
DφI

=IZg,

(37)

Dhmg

DφI
= IZg − K−1

Q

δ̂Qmg

δ̂φI

∣
∣
∣
∣
∣ Dpme
DφI

=
⎧
⎨

⎩

0 if pmei ∈ p̄me
I Yi if pmei ∈ p̌me

:i=1,...,n p

. (38)

where IY = Dpme
DφI

are already calculated and stored sensitiv-

ities of nodal unknowns and IHn
g = Dhmgn

DφI
are sensitivities

of integration point unknowns at the and of last micro step.
For the calculation of the unknown second-order sen-

sitivities D2pm
DφI DφJ

and D2hmg
DφI DφJ

, Rm and Qmg have to be

differentiated twice, with respect to φI and φJ . After a pro-
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cedure equivalent to the one for the first-order sensitivity
analysis, one gets a system of linear equations

Km
D2pm

DφI DφJ
= −I J R̃m, I J R̃m =

nme

A
e=1

∑

g∈Ge

wgp
I J R̃mg,

(39)

where again only vector I J R̃m on the right-hand side of
Eq. (39) has to be calculated. This vector is called inde-
pendent second-order sensitivity pseudo-load vector. After

obtaining D2pm
DφI DφJ

, the derivatives D2hmg
DφI DφJ

, g = 1, 2, . . . ntg
can be expressed. The actual analytical expressions are too
lengthy to be presented here. Thus, only an automatic differ-

entiation based notation of I J R̃mg and
D2hmg
DφI DφJ

is given here
by

I JZg = −K−1
Q

δ̂

δ̂φJ

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

δ̂Qmg

δ̂φI

∣
∣
∣
∣
∣ Dpme

DφI
=IY,

Dhmg
DφI

=IHg ,
Dhmgn
DφI

=IHn
g

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
Dpme
DφJ

=JY,
DIY
DφJ

=I JVe,

Dhmgn
DφJ

=JHn
g ,

DIHn
g

DφJ
=I JHn

g

,(40)

I J R̃mg = δ̂

δ̂φJ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

δ̂Rmg

δ̂φI

∣
∣
∣
∣
∣ Dpme

DφI
=IY,

Dhmg
DφI

=IHg

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
DIY
DφJ

=I JVe,
Dpme
DφJ

=JY,

DIHg
DφJ

=I JZg

, (41)

D2hmg

DφI DφJ
= I JZg

−K−1
Q

δ̂Qmg

δ̂φI J

∣
∣
∣
∣
∣ Dpme
DφI J

=
⎧
⎨

⎩

0 if pe i ∈ p̄me
I J Yi if pe i ∈ pme\p̄me

:i=1,...,n p

. (42)

Additional intermediate quantities IZg and I JZg are again
evaluated during the evaluation of I R̃mg and I J R̃mg , stored
in memory and used later for the evaluation of Dhmg/DφI

and D2hmg/DφI DφJ . Matrices IY = Dpme
DφI

, JY = Dpme
DφJ

,

I JY = D2pme
DφI DφJ

, IHg = Dhmg
DφI

, JHg = Dhmg
DφJ

, IHn
g = Dhmgn

DφI
,

JHn
g = Dhmgn

DφJ
, I JHn

g = D2hmgn
DφI DφJ

are already calculated and
stored as first and second order sensitivities.

All first order sensitivities have to be calculated to be able
to calculate the second order sensitivities. For this reason, in
the algorithm in Box 2 the second order sensitivity analysis
is performed after the first order sensitivity analysis. For the
implementation of multi-scale schemes it should be noted

that the only multi-scale scheme dependent expressions in
Eqs. (36)–(42) are velocity fields IVe and

I JVe.

4 Multiscale methods

4.1 MIELmethod

MIEL (mesh-in-element) method is a multi-scale finite
element method that can be classified as a domain decompo-
sitionmethod. Thismethod is appropriate for caseswhere the
difference between two scales is finite and the scales remain
coupled, or when in the region of high gradients the FE2

multi-scale approach fails. The MIEL scheme was described
in [18,19,24]. Next, we developed an automatized sensitivity
analysis based version of the MIEL method. At the macro
level, we have compatible interpolation of unknown fields at
the boundary of macro elements, whereas material charac-
teristics, inhomogeneities, inner structure, such as openings,
incisions of different materials, are defined only at micro
scale. In Fig. 2 the MIEL procedure is presented. Let assume
the standard interpolation of displacementsuM on the bound-
ary of the macro element

uM (�) =
∑

i

Ni (�)uMei (43)

where Ni (�) are finite element shape functions, � =
(ξ, η, ζ ) reference coordinates and uMei are displacements
in i th macro element node. To ensure compatibility of dis-
placements at macro andmicro level, we impose the essential
boundary conditions at the complete boundary of the micro
mesh by

ūm(�) = (ūm s(�) + (λm − λm s)(uM (�) − ūm s(�)))(44)

where ūm s(�) are displacements at the boundary at the end
of the last macro step. The derivatives of (44) with respect to
components of macro element nodal displacements are given
by

∂ ūm i (�)

∂uMe j k
= δik(λm − λm s)N j (�). (45)

A set of macro element unknowns is pMe = ⋃
j,k uMe j k

and pm is composed of the micro mesh nodal displacements.
Thus, (44) defines the dependency between the degrees of
freedom with prescribed essential boundary condition at
the micro level p̄m = p̄m(pMe, λm) and macro element
unknowns pMe.

The macro element residual RMe is in the case of MIEL
obtained by the integration of the internal forces, part ofweak
form (9), over the micro mesh, where the micro deformation
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Fig. 2 MIEL multi-scale
scheme

gradient Fm = Fm(pme(pMe, λm)) and micro stress tensor
Pm = Pm(pme(pMe, λm)) implicitly depend on the degrees
of freedom of macro element

∫

�Me

PM · δFM dV =
∫

�m

Pm · δFm dV

=
nme∑

e=1

∫

�me

Pm · δFm dV (46)

Discretization of the micro mesh together with the
variation of deformation gradient δFm(pme(pMe, λm)) =
∂Fm
∂pme

Dpme
DpMe

δpMe and standard Gauss integration over the
micro element domain �me leads from (46) to the macro
element residual RMe in a form

RMe =
nme∑

e=1

∑

g∈Ge

wgp RMg (47)

RMg = Jξ Pm : ∂Fm

∂pme

Dpme

DpMe
(48)

where RMg is a contribution to the macro element residual
evaluated at the micro elementGauss points. Differentiation
of (48) leads to the macro element tangent matrix

KMe =
nme∑

e=1

∑

g∈Ge

wgp KMg (49)

KMg = ∂RMg

∂pMe
= Jξ

(
∂Pm

∂pme

Dpme

DpMe
: ∂Fm

∂pme

Dpme

DpMe

+Pm :
(

∂2Fm

∂pme
2

Dpme

DpMe

Dpme

DpMe
+ ∂Fm

∂pme

D2pme

Dp2Me

))

(50)

where againKMg is a contribution to the macro element tan-
gent evaluated at micro mesh Gauss points.

The residual and tangent matrix are for each macro ele-
ment obtained directly from the micro scale problem and
each macro element is associated with exactly one micro
problem. Macro element performs only proper transfer of
components of the macro element residual vector and tan-
gent matrix from micro scale to macro scale finite element
assembly procedure.

4.1.1 Sensitivity analysis based implementation of MIEL

Sensitivity analysis is required for the evaluation of implicit

dependencies Dpme
DpMe

and D2pme
Dp2Me

in (48) and (50). From (43)

there follows a set of sensitivity parameters of the micro
problemφ = φMe = pMe =⋃ j,k uMe j k , and from (44) and

(45) the components of velocity field IV = ∂p̄m (φ,λm )

∂φI
. Thus,

the components of the first order boundary condition velocity
field IV are the values of the macro element shape functions
at the position of the boundary nodes of the micro mesh. For
boundary condition in the form of linear combination (44),
the second derivatives are zero, and consequently the second
order velocity fields are I JV = 0.
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Fig. 3 MIEL macro tangent
matrix KMe; above—Schur
complement implementation
and below—sensitivity based
implementation

Other quantities required in two-level path-following
algorithm Box 2 are then: macro level variables that are
passed to macro level S = SMe = RMe (48) and total deriva-
tive DS

Dφ = DSMe
DφMe

= KMe. For the numerically efficient

implementation of (48) and (50), we also need ADB form of
(48) and (50). From (14) ADB form of (48) and (50) leads to

RMg = Jξ
δ̂W

δ̂pMe

∣
∣
∣
∣
∣
hmg=const .,

Dpme
DpMe

=Yφ

, (51)

KMg = δ̂RMg

δ̂pMe

∣
∣
∣
∣
∣ Dpme
DpMe

=Yφ,
DYφ

DpMe
=Yφφ,

(52)

where Yφ = Dpme
DpMe

and Yφφ = D2pme
Dp2Me

are first end second

order sensitivities calculated and stored during the analysis.

4.1.2 Schur complement based implementation of MIEL

Let us consider formulations where the solution is within one
macro step path-independent, such as hyper-elastic problems
solved with an arbitrary number of micro steps or elasto-
plastic problems solved at the micro level in one load step.
In this case, an alternative formulation of MIEL based on the
calculation of Schur complement is possible, as originally
presented in [18]. Let us form, at the converged state of the
micro problem, a full set of equations that include uncon-
strained pm and constrained p̄m unknowns by

[
Km̄ Km̄m

Kmm̄ Km

]

·
[

p̄m

pm

]

=
[
Rm̄

0

]

. (53)

Schur complement of (53) leads to reduced set of equations
Kcc 
p̄m = Rc, where Kcc, and Rc are condensed tangent

matrix and residual of micro problem, respectively. Since the
relation p̄m = p̄m(pMe, λm) is linear [see (44)], we can write

p̄m = T.pMe (54)

where T is a transformation matrix (for details see [9]). The
macro element residual and tangentmatrix are then expressed
by

RMe = TT .Rc (55)

KMe = TT .Kcc.T (56)

With RMe and KMe known, one can apply the algorithm
presented in Box 2, with sensitivity analysis related parts
omitted. The size of Kcc is equal to the number of con-
strained DOFs at the boundary of the mesh and grows with
the micro mesh density. For densely meshed microstructure
the calculation of the Schur complement inflicts high mem-
ory allocation and is time consuming. Contrary, the number
of sensitivity parameters is the same as the number of nodal
unknowns of the macro element, thus independent of micro
mesh density. Schematic comparison can be seen for 2D case
discretizedwith 4 nodded elements in Fig. 3. ForSchur com-
plement implementation, condensation is done with respect
to DOFs of 20 border nodes. The dimension of the resulting
matrix Kcc is 40 × 40. To get macro element tangent matrix
KMe with dimension 8 × 8, additional transformations (55),
(56) need to be performed. With the growth of mesh den-
sity, also the number of micro-structure border nodes grows
and with that the dimension of the matrix to be calculated.
In the case of sensitivity based implementation, the second
order sensitivity analysis is needed with respect to 8 DOFs
in macro element corner nodes and summation of (51), (52)
over the micro mesh integration points.
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Fig. 4 Comparison of the computational time with respect to micro
mesh density for two implementations of MIEL method

The comparison of the computational cost of the two
implementations is done for the 3D case, which is more
computationally demanding than the 2D case. In Fig. 4, the
calculation time for the Schur complement and for the sec-
ond order sensitivity analysis is presented in relation to the
density of micro mesh. The example is composed of one 3D,
hexahedral macro element. The macro element is uniformly
subdivided into n × n × n micro mesh. Two micro material
models are considered, finite strain elasto-plastic as defined
in Sect. 1.1 and hyper-elastic based on hyper-elastic strain
energy (2). The Schur complement’s computational time
grows polynomially, whereas sensitivity calculation retains
approximate linearity with the number of equations at the
micro level. The timing of the sensitivity analysis increases
with the complexity of the material model and the number
of DOFs of the macro element. However, overall behavior
remains the same.

4.2 FE2 method

Standard two-level finite element homogenization approach
FE2 is appropriate for the problems where scales are sepa-
rated far enough and are only weakly coupled, see [16]. The
FE2 method was already implemented using sensitivity anal-
ysis in [22,27], but without two interacting path-following
schemes. Within the FE2 approach we have one micro FE
model, also called a representative volume element (RVE),
at each macro mesh integration point as shown in Fig. 5. All
information about micro-structure is obtained from compu-
tations at the micro level by averaging the material response
characterized by an appropriate stress measure and con-
stitutive tangent matrix over RVE. With the Gauss point
contribution to the macro level weak form (PM · δFM ) and
macro level discretization of deformation gradient δFM =
∂FM
∂pMe

δpMe, the macro element residual leads to

RMe =
∑

g∈Ge

wgp RMg, (57)

RMg = Jξ PM : ∂FM

∂pMe
, (58)

where the macro level first Piola–Kirchoff stress tensor PM

is obtained by averaging the micro level first Piola–Kirchoff
stress tensor PM = {Pm}. The operation of averaging is here
denoted by {·}. Several types of boundary conditions can
be imposed on the RVE: e.g., fully prescribed displacements
and fully prescribed traction, which are based on the uniform
strain and stress assumptions and periodic boundary condi-
tions that enforce a displacement constraint, which is suited
for periodic media. Here, periodic boundary conditions are
achieved (see e.g. [16]) by applying first the prescribed dis-
placements in the corners of RVE by

ūm = (FM s + (λm − λm s)(FM − FM s) − I)Xm (59)

where FM s is macro deformation gradient at the end of the
last macro step. The derivatives of (59) with respect to com-
ponents of FM are given by

∂ ūm i

∂FM j k
= δi j (λm − λm s)Xmk . (60)

Thus, (59) defines the dependency p̄m = p̄m(FM , λm)

between the set of micro nodal unknowns with prescribed
essential boundary condition p̄m and the macro deforma-
tion gradient FM . For the unconstrained boundary nodes, the
periodicity of boundary conditions is adopted with the use
of Lagrange multipliers (for details see [27]). Note that the
introduction of Lagrange constraints only extends the vec-
tor of micro level unknowns pm with Lagrange multipliers
and micro level residual Rm with constraint equations and
it does not change the primal and sensitivity analysis proce-
dures described in Sect. 3 .

Differentiation of (48) then leads to the macro element
tangent matrix

KMe =
∑

g∈Ge

wgp KMg (61)

KMg = ∂RMg

∂pMe
+ ∂RMg

∂PM

DPM

DFM

∂FM

∂pMe
(62)

where DPM
DFM

= { ∂Pm
∂pme

Dpme
DFM

} is macroscopic constitutive

matrix obtained by averaging the microscopic constitutive
matrices.
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Fig. 5 FE2 multi-scale scheme

4.2.1 Sensitivity analysis based implementation of FE2

Sensitivity analysis is required for the evaluation of implicit

dependency DPM
DFM

in (62). From (59) there follows a set of
sensitivity parameters of micro problem

φ =
⋃

i j

FM i j (63)

and from (60) the components of velocity field IV =
∂p̄m (φ,λm )

∂φI
. Thus, the components of the first order boundary

condition velocity field IV are appropriate nodal coordinates
of the corner nodes of the micro mesh. For boundary con-
dition in the form of linear combination (59), the second
derivatives are zero, i.e., I JV = 0. The micro level vari-
ables that are passed to macro level from a single RVE are
S = PM = {Pm} and the total derivative DS

Dφ = { ∂Pm
∂pme

Dpme
DFM

}.
The contributions of micro problems at all Gauss points of
macro element are needed for the formulation of macro ele-
ment. Thus, a complete set of variables passed from macro
element to micro problems is φMe = ⋃

g∈Ge
φ(g), where

Ge is a set of Gauss points of the eth macro element. A
complete set of variables passed from micro to macro ele-

ment is SMe = ⋃
r∈Me

S(r) and DSMe
DφMe

= ⋃
r∈Me

(
DS
Dφ

)(r)

where Me is a set of micro problems that corresponds to
Ge. For the numerically efficient implementation of (58) and
(62), we also need the ADB form of (58) and (62). From
PM · δFM = S · δFM the ADB form of (58) and (62) leads
to

RMg = Jξ
δ̂(S : FM )

δ̂pMe

∣
∣
∣
∣
∣
S=const .

(64)

KMg = δ̂RMg

δ̂pMe

∣
∣
∣
∣
∣ DS
DFM

= DS
Dφ

(65)

and

DS
Dφ

=
{

∂Pm

∂pme

Dpme

DFM

}

=

⎧
⎪⎨

⎪⎩

δ̂Pm

δ̂FM

∣
∣
∣
∣
∣ Dpme
DpMe

=Yφ

⎫
⎪⎬

⎪⎭
(66)

where Yφ = Dpme
DpMe

are already calculated and stored first
order sensitivities.

4.2.2 Schur complement based FE2 implementation

As in the case of the MIEL method, the Schur complement
of constrained nodal DOF at the micro level can be used to
calculate macro element residual and tangent matrix. The
method leads to the traditional implementation of the FE2

method, as introduced in [16], and itwill not be repeated here.
The number of RVE corner nodes is constant, which makes
the cost of calculating the Schur complement independent
of the density of themicromesh thus, the advantages of using
the sensitivity analysis are less pronounced than for MIEL.
Note that the standard method is only consistently linearized
for the problems that are path independent within a single
macro step.

5 Numerical examples

Numerical examples were calculated using program pack-
ages AceGen and AceFEM [12]. Finite element user sub-
routines for primal and analytical first and second order
sensitivity analyses were automatically derived, optimized
and written in C language with the use of AceGen auto-
matic code generator. The MIEL and FE2 methods based on
sensitivity analysis as well as the one based on the Schur
complement were implemented within AceFEM environ-
ment according to algorithm defined in Box 2. Intel MKL
sparse linear algebra numerical library was used for the lin-
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ear algebra operations (calculation of theSchur complement
and the solution of linear systems of equations).

For 2D examples, nine nodded, isoparametric, quadrilat-
eral, plane strain elements are used integrated with 3 × 3
Gauss integration, and for 3D examples, eight nodded,
isoparametric, hexahedral elements are used, integrated with
2× 2× 2 Gauss integration. For all examples, a finite strain
elasto-plastic material model as described in Sect. 1.1 is used
at the micro level.

The abbreviations used to indicate specific combination
of methods solution procedures are structured as follows

method − nM/nm − implementation

where method can be MIEL or FE2, nM is the number of
macro steps or “Adaptive” for adaptive macro time stepping,
nm is the number ofmicro steps for eachmacro step or “Adap-
tive” for adaptive micro time stepping, and implementation
is “Sens.” for sensitivity analysis based implementation,
“SchurMMA” for the Schur complement based formula-
tion implemented in Mathematica and “SchurMKL” for the
Schur complement based formulation implemented with
Intel MKL Library. The Schur complement based imple-
mentation is computationally identical to the sensitivity
analysis based implementation for nm = 1. AlthoughMathe-
matica andMKLboth calculate theoretically the sameSchur
complement, the algorithm implemented in MKL performs
perturbation of the zeros at the main diagonal resulting in
slightly imprecise tangent matrix as shown and explained on
examples in Sect. 5.2.

5.1 Validation of implementation of multi-scale
algorithm

The first numerical example is a three-dimensional cantilever
with clamped right and left end as shown in Fig. 6. Uniform
pressure p = 10 in the vertical z direction was imposed
at the top surfaces of the middle part of the cantilever. The
dimensions of the cantilever are 12× 2.4× 2.4. 3D, hexahe-
dral elements are used at both levels. Material properties are
E = 21,000, ν = 0.3, σy0 = 24 and Kh = 100. A homo-
geneous mesh is used at both levels, thus for the purpose of
validation themicro level is uniform and nomicrostructure is
present. The simulations were performed with adaptive time
stepping at both levels. The displacements in the z direction
of nodes on line AB are presented for all simulations in Fig. 7.
The extent of the plastic zone at the end of the simulation is
shown in Fig. 6, where red color indicates the plastic region.
Multi-scale results are comparedwith the single-scale results.
The same finite elements are used for the single scale mesh
as for the micro level mesh of the multi-scale simulation.

First the FE2 method is verified by comparing the results
obtained by single scale analysis with mesh 20× 4× 4 with

Fig. 6 Clamped cantilever with macro and micro mesh and enforced
natural and essential boundary conditions

multi-scale analysis for macro mesh density 20 × 4 × 4 and
micro mesh densities 2×2×2 and 10×10×10. The results
must be independent of micro mesh density due to the homo-
geneous micro mesh and exact enforcement of periodicity of
micro mesh boundary conditions. Multi-scale results must
also be exactly the same as single-scale results, which is
shown in Fig. 7 (curves 1, 2 and 3). This verifies the FE2

implementation.
For the MIEL method, the results of single scale simula-

tion and multi-scale simulation can be exactly the same only
for micro mesh density 1 × 1 × 1. This is shown in Fig. 7
(curves 1, 4). This verifies also the MIEL implementation.
With the change of micro mesh density to 2×2×2, 5×5×5
and finally to 10× 10× 10 (curves 5, 6, 7), the MIEL results
get close to single scale FEMsolution obtainedwith themesh
80 × 16 × 16 (curve 8). This is the consequence of a better
description of the deformation field over the domain ofmacro
element, which partially eliminates the locking behavior of
the isoparametric hexahedral element. The effect is similar
to that of enhanced strain finite elements, where additional
degrees of freedom are added inside the elements.

5.2 Convergence rate of two-level path-following
iterative procedure

The convergence rate of the two-level path-following iter-
ative procedure defined by an algorithm in Box 2 is
investigated on an example from the previous section. The
simulation is performed in 10 stepswith a constant load incre-
ment 
λM = 0.1. Homogeneous micro mesh 5 × 5 × 5
is used for all cases. Each macro step is followed by one
micro step (denoted by -10/1-) or 5 micro steps (denoted by
-10/5-). Results of the convergence rate of the two-level path-
following iterative procedure for the last macro load step,
where most of integration points are already in the plastic
regime, are shown in Tables 1 and 2. The effect of the num-
ber ofmicro steps and the type of implementation (theSchur
complement or sensitivity analysis based) is investigated.
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Fig. 7 Displacement in z
direction of line AB

Table 1 Comparison of MIEL convergence rate for the last macro step

NR it. MIEL-10/1-Sens. MIEL-10/5-Sens. MIEL-10/5-Sens.end MIEL-10/1-SchurMKL MIEL-10/5-SchurMKL

1 1.023e−01 1.036e−01 1.036e−01 1.023e−01 1.036e−01

2 7.304e−03 4.999e−03 4.089e−03 7.304e−03 4.089e−03

3 4.779e−03 3.875e−03 4.380e−03 4.779e−03 4.380e−03

4 8.786e−05 6.749e−05 3.984e−04 8.786e−05 3.984e−04

5 6.102e−07 5.175e−07 7.115e−05 6.102e−07 7.115e−05

6 7.051e−12 5.889e−12 1.962e−05 7.066e−12 1.962e−05

7 9.325e−17 1.778e−16 6.829e−06 1.016e−14 6.829e−06

8 2.708e−06 2.708e−06

… … …

29 5.948e−13 5.950e−13

Table 2 Comparison of FE2 convergence rate for last macro step

NR it. FE2-10/1-Sens. FE2-10/5-Sens. FE2-10/5-
Sens.end

FE2-10/1-
SchurMKL

FE2-10/1-
SchurMMA

FE2-10/5-
SchurMMA

1 1.310e−02 1.322e−02 1.322e−02 1.314e−02 1.310e−02 1.322e−02

2 5.014e−03 4.718e−03 4.103e−03 5.128e−03 5.014e−03 4.103e−03

3 2.648e−03 2.561e−03 2.321e−03 2.522e−03 2.648e−03 2.321e−03

4 4.127e−04 4.052e−04 7.800e−04 3.869e−04 4.127e−04 7.800e−04

5 2.557e−05 2.315e−05 2.761e−04 2.245e−05 2.557e−05 2.761e−04

6 1.428e−07 1.151e−07 1.145e−04 2.209e−08 1.428e−07 1.145e−04

7 6.368e−12 3.310e−12 5.403e−05 8.936e−11 6.367e−12 5.403e−05

8 8.720e−16 3.862e−16 2.738e−05 6.266e−13 5.230e−16 2.738e−05

9 1.451e−05 1.451e−05

… … …

41 9.287e−14 9.287e−14

Table 1 shows that in the case when 1 macro load step
is followed by one micro step (MIEL-10/1-SchurMKL and
MIEL-10/1-Sens.), convergence is quadratic and the results
are exactly the same regardless of implementation. Sensi-
tivity based implementation retains quadratic convergence
also for nm = 5, while the SchurMKL based imple-
mentation converges very slowly. The column denoted by
MIEL-10/5-Sens.end contains a special case, where the sen-
sitivity equations given in Sect. 3.2 are not resolved after

each micro step, but only at the end of micro solution. This is
again equivalent to implementation MIEL-10/5-SchurMKL.
It shows that only a fully consistent sensitivity analysis
ensures quadratic convergence of the overall MIEL algo-
rithm.

Secondly, the convergence rate of FE2 scheme was inves-
tigated in Table 2. The same conclusions can be drawn as
for MIEL. Only fully consistent sensitivity analysis ensures
quadratic convergence of the overall FE2 algorithm. The last
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Table 3 Effect of
implementation on numerical
efficiency of the FE2 method

Implementation Micro mesh Normalized
time

Total NR
iterations

Total micro
problems

FE2-10/1-Sens. 5 × 5 × 5 1.0 60 153600

FE2-10/5-Sens. 5 × 5 × 5 3.6 59 151040

FE2-10/1-SchurMKL 5 × 5 × 5 1.5 65 166400

FE2-10/5-SchurMKL 5 × 5 × 5 8.8 136 348160

FE2-10/1-Sens. 10 × 10 × 10 6.3 60 153600

FE2-10/1-SchurMKL 10 × 10 × 10 8.5 67 171520

two columns contain the results of the Schur complement
based formulation implemented directly in Mathematica.
This is not numerically efficient, but it is necessary to show
that the FE2-10/1-SchurMMA implementation is numeri-
cally identical to the FE2-10/1-Sens. implementation. The
imposition of periodic boundary conditions using Lagrange
constrains results in the loss of positive definiteness of the
tangentmatrix aswell as produces zeros at themain diagonal.
Some algorithms for the evaluation of the Schur comple-
ment, such as the one implemented in the Intel MKL library,
performperturbation of the zeros on themain diagonal result-
ing in imprecise Schur complement. This imprecision is
sufficient to alter, although not significantly, the convergence
behavior. This case is shown in fourth column in Table 2, des-
ignated as FE2-10/1-SchurMKL.

5.3 Numerical efficiency of two-level path-following
iterative procedure

The numerical efficiency of the two-level path-following
iterative procedure is investigated on an example from
Sect. 5.1. All simulations were performed on PCwith Intel i9
2.8GHz,16 Core processor and 128GB RAM. Micro prob-
lems were solved in parallel on 14 cores. Mathematica was
used only as a steering application for parallelization and the
control of the iterative procedure, while all computationally
intensive operations were performed with compiled C codes.
The material model used is a 3D finite strain elasto-plastic
model based on an exact exponential map (see e.g. [13]),
which is by itself computationally intensive. Consequently,
the administrative cost turns out to be negligible when com-
pared to the actual computational cost.

The effect of implementation on computational time is for
FE2 formulation presented inTable 3.Anexample introduced
in Sect. 5.1 is solvedwith themacromesh density 20×4×4 in
10 load stepswith a constant load increment
λM = 0.1. The
computational time normalized with respect to FE2-10/1-
Sens. formulation is presented along with the total number of
Newton- - Raphson iterations for all load steps and the total
number of micro problems solved during the complete sim-
ulation. The simulation using FE2-10/1-Sens. formulation

took 1968.5 s of real time. The results are presented for the
number of micro steps nm = 1 and nm = 5 and the density of
themicromesh5×5×5 and10×10×10.Thefirst order sensi-
tivity analysis based formulation is in all cases faster than the
corresponding Schur complement based formulation. The
loss of quadratic convergence of the FE2-10/5-SchurMKL
formulation results in more iterations per load step, which is
the most influencing factor. The density of the micro mesh
influences the total computational time; however, the rela-
tion between the sensitivity based formulation and theSchur
complement based formulation remains the same.

The effect of implementation, micro mesh density and
material model on computational time is for the MIEL for-
mulation presented in Table 4. The example introduced in
Sect. 5.1 is in this case solved with the macro mesh density
10 × 2 × 2 in 5 load steps with a constant load increment

λM = 0.2. The computational time is normalized with
respect to MIEL-5/1-Sens. formulation, which, for micro
mesh 5 × 5 × 5, took 37s of real time. Two micro mate-
rial models are considered: finite strain elasto-plastic model
as defined in Sect. 1.1 and hyper-elastic model based on
hyper-elastic strain energy (2). For a sparse micro mesh
(5×5×5) theSchur complement based formulation is faster
than the second order sensitivity analysis based formula-
tion. The advantages of the sensitivity based implementation
become apparent with denser micro meshes (30× 30× 30).
As already shown in Fig. 4, the cost of the calculation of the
Schur complement grows much faster with the density of
the micro mesh than the cost of the second order sensitiv-
ity analysis. While the cost of the Schur complement does
not depend on the material model used, the cost of sensitiv-
ity analysis does. Consequently, the difference between the
numerical efficiency of the Schur and sensitivity based for-
mulations is greater for the hyper-elastic material model than
for the elasto-plastic material model.

5.4 Effect of non-linearity of micro-structure

The example demonstrates how the use of a two-level
path-following procedure improves the numerical efficiency
of multi-scale simulation in the case of highly nonlinear
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Table 4 Effect of
implementation and material
model on normalized time for
the MIEL method

Implementation Micro mesh Normalized time
hyper-elastic

Normalized time
elasto-plastic

MIEL-5/1-Sens. 5 × 5 × 5 1.0 1.8

MIEL-5/1-SchurMKL 5 × 5 × 5 0.8 1.2

MIEL-5/1-Sens. 30 × 30 × 30 98.2 287.6

MIEL-5/1-SchurMKL 30 × 30 × 30 174.0 350.4

Fig. 8 Uni-axial test of macro
mesh and geometry together
with RVE mesh and geometry
and deformed RVE

Fig. 9 Uni-axial test: a
Horizontal residual force F and
b vertical displacement in point
B
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microstructure response and relatively monotonic response
of the macro structure. To demonstrate that, a 2D, plane
strain, uni-axial test is simulated using FE2 multi-scale
method based on a fully consistent sensitivity analysis. The
macro geometry and mesh together with the RVE geome-
try and mesh are shown in Fig. 8. The macro domain is
discretized with 4 × 2 macro elements and displacement
umax = 0.6 is prescribed at the end. The RVE of peri-
odic micro-structure is composed of hyper-elastic rim with
material properties E = 21,000, ν = 0.3 and a narrow
elasto-plastic incision with properties E = 21,000, ν = 0.3,
σy0 = 24. The incision has an additional small imperfection
in the middle. At RVE level Q2, nine nodded, isoparamet-
ric, quadrilateral, plane strain elements were used, to avoid
the locking effect. At a certain load level, a strongly nonlin-
ear process of necking of the incision starts and requires
very small load steps. If nm = 1 (FE2-Adaptive/1-Sens.
approach), the maximum micro level load increment lim-
its the macro load increment resulting in small macro steps.
Due to the elastic rim, the global response remains rela-
tively unaffected. If an adaptive path-following procedure is
applied also at themicro level (FE2-Adaptive/Adaptive-Sens.
approach), significantly larger load steps can be performed at
themacro level. The FE2-Adaptive/Adaptive-Sens. approach

needs 13 macro load steps, whereas for the FE2-Adaptive/1-
Sens. approach33macro load steps are done. Figure 9a shows
the macro reaction force F and Fig. 9b the absolute contrac-
tion at point B at the micro level with respect to global load
factor λM for both cases. The response curves are almost the
same for both cases. Thus, an efficient solution of strongly
nonlinear problems requires two level adaptive time stepping
procedures where the maximum size of load increments at
the micro level determines the overall efficiency of the sim-
ulation.

5.5 Effect of path dependency of microstructure

The example demonstrates how the use of two-level path-
following procedure improves the numerical efficiency of
multi-scale simulation in the case of strongly path-dependent
problems. The accuracy of the integration of evolution equa-
tions depends on the micro step size, thus limiting the size
of micro load steps. This, for the nm = 1 case, limits also
the macro load step size similarly as in the previous exam-
ple. Again, the two-level adaptive path-following procedure
proves to be numerically more efficient than the standard
approach where each macro step is followed by one micro
step.
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Fig. 10 Macro geometry

Fig. 11 Exy with respect to

λMmax and number of micro
steps for the MIEL scheme

(a) (b)

Fig. 12 Exy with respect to

λMmax and number of micro
steps for the FE2 scheme

(a) (b)

Long clamped beam with dimensions 20 × 1 and with
macro mesh division 80×4 has prescribed vertical displace-
ment vmax = 0.25 at the middle, as shown in Fig. 10. The
beam is perforated with 320 perforations with the radius that
gives 30% perforation of the beam. Perforations are evenly
distributed in a way that each perforation is placed at the
center of the corresponding macro element. Two cases are
investigated. In the first case, a MIEL multi-scale computa-
tional scheme is employed. Due to the even distribution of
perforations, all the MIEL micro meshes look the same, as
shown inFig. 10a. In the second case, infinitely small perfora-
tions were assumedwith the same 30% perforation ratio as in
the first case. The second case is simulated by the FE2 scheme
with RVE, as depicted in Fig. 10b. The RVEmesh is identical

to the MIEL micro mesh due to the evenly distributed perfo-
rations. Material properties of the microstructure are in both
cases E = 21,000, ν = 0.3, σy0 = 24, Kh = 21, R∞ = 12
and δ = 30. The value of strain tensor component Exy in
point A is for various solution strategies compared for the
MIEL scheme in Fig. 11 and for the FE2 scheme in Fig. 12.

In Fig. 11a the response curve E A
xy(λM ) is shown for the

MIEL-Adaptive/1-Sens. approach with different prescribed
maximal size of macro load step 
λMmax , adaptive time
stepping at macro level and one micro step per each macro
step. Converged solution is achieved for 
λMmax = 0.01.
Secondly, Fig. 11b displays the results for fixed 
λMmax =
0.2 and 1, 2, 5 and 10 micro steps per each macro step. It
can be seen that the evolution equation integration error is
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significantly reduced with the increased number of micro
steps, without the need for costly additional macro steps.
There is, of course, a limit to which additional micro steps
can improve the overall results, as shown in Fig. 11b.

For the FE2 scheme the results are compared in the same
way as for the MIEL scheme. In Fig. 12a the response curve
E A
xy(λM ) is shown for FE2-Adaptive/1-Sens. with respect to

the prescribed maximal size of macro load step 
λMmax

and in Fig. 12b for 
λMmax = 0.2 and with different num-
ber of micro steps. Adaptive time stepping at macro level
is used in all cases. Conclusions are the same as for MIEL.
With a two-level path-following scheme, the same accuracy
is achieved with 20-times fewer macro steps.With additional
micro steps, the method was able to capture also fine details
of response curve near λM = 0.2.

Point A is in the corner, close to the boundarywhere defor-
mationgradients are high.Consequently, the converged curve
E A
xy(λM ) is different for the MIEL and the FE2 scheme.

6 Conclusions

In the paper a generalized essential boundary condition sen-
sitivity analysis based implementation of FE2 and MIEL
multi-scale methods was derived and described in detail,
as an alternative to more traditional implementations of
multi-scale analysis, where the calculation of the Schur
complement of the microscopic tangent matrix is needed
for bridging the scales. The paper shows that the deriva-
tion of algorithmic macroscopic tangent requires for the
FE2 multi-scale method the first order essential boundary
condition sensitivity analysis and for the MIEL multi-scale
method the second order essential boundary condition sen-
sitivity analysis. Thus, a general automatic differentiation
based formulation (ADB) is introduced for the first and sec-
ond order essential boundary condition sensitivity analysis
that can be applied on an arbitrary coupled, path-dependent
micro material model or element formulation. It has been
shown in the paper that ADB brings several advantages. The
first advantage is the ability to naturally introduce a fully con-
sistently linearized two-level path-following algorithm as a
solution algorithm for the multi-scale modeling. Sensitivity
analysis allows that each macro step can be followed by an
arbitrary number of micro substeps while retaining quadratic
convergence of the overall solution algorithm. Using exam-
ples, it has been shown that this cannot be achieved with
the standard Schur complement based methods. Addition-
ally, the method completely avoids the evaluation of the
Schur complement of the micro tangent matrix as numeri-
cally demanding mathematical operation which, especially
for the MIEL multi-scale methods, results in large dense
matrices.

The advantages of the sensitivity analysis based imple-
mentation in comparison with the traditional one were
recognized and verified on numerical examples. The con-
vergence of results with respect to the size of the macro
load step and the number of substeps at the micro level was
investigated. With additional micro steps, the accuracy of
the global response can be improved without costly addi-
tional macro steps. This is especially evident in the case of a
strongly nonlinear micro response, which, for some reason,
does not reflect the global response, but it still limits the size
of the macro load steps. Similarly, a strongly path-dependent
micro material model requires small micro load steps that
limit within the standard implementation also the size of the
macro load step. This restriction is again relaxed with the
introduction of the two-level path-following algorithm.
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17. Lamut M, Korelc J, Rodič T (2011) Multiscale modelling of het-
erogeneous materials. Mater Tehnol 45:421–426
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