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An efficient database management system that supports the integration and interoperability of different information models is a
foundation on which the higher levels of cyber-physical systems are built. In this paper, we address the problem of integrating
monitoring data with building information models through the use of the graph data management system and the IFC standard
(Industry Foundation Classes) to support the need for interoperability and collaborative work. 0e proposed workflow describes
the conversion of IFC models into a graph database and the connection with data from sensors, which is then validated using the
example of a bridge monitoring system. 0e presented IFC and sensor graph data models are structurally flexible and scalable to
meet the challenges of smart cities and big data.

1. Introduction

Data management (DM) can be defined as a set of best
practices, architectural techniques, and tools that enable
consistent data access and delivery for a wide area of all
applications and business processes or, in the context of the
Internet of0ings (IoT), the foundation on which the higher
levels of cyber-physical systems are built. In order to take full
advantage of the Construction 4.0 [1] concepts and use cases,
we must first design an efficient data management system
that will support integration of different information
models, enable data interoperability, and support integra-
tion of real-time data streams. Different information models
include, but are not limited to, building information model
(BIM) and sensor data models.

Mannino et al. [2] in their literature review on the
integration of BIM and IoT integration for facility man-
agement (FM) concluded that there are still a number of
challenges that require research and development. One of
the most important research challenges is the increasingly
important issue of data interoperability and improvements
to the Industry Foundation Classes (IFC) [3] standards for
the support of FM. Moreover, with the increased de-
ployment of various IoT systems, linking building

information models with the real-time data streams is
becoming an important research topic [2]. Currently, most
solutions employ an external database system to store the
sensor data. 0is external database system is then con-
nected to the modelling or collaboration tools for analysis
and visualization [4–7]. While using multiple databases is
a working solution to a problem, it also presents some
challenges, such as deploying and managing multiple
database systems and scalability issues. To address these
challenges, our goal was to propose a data management
system that supports multiple data types and allows
pairing various data models to the real-time sensor data.
One of the possible solutions to the design problem is to
use a graph-based database management system [8] to
support both the model information and the monitoring
data to facilitate future use cases (for example, digital/
smart cities) that will require efficient processing and
querying of diverse datasets (e.g., model data, sensor in-
formation, time series, and locations).

0is paper provides a description of a developed graph-
based database management system that enables efficient
and scalable storage solution for diverse datasets (as in-
troduced above) as well as a platform for various analyses
and visualizations required by different use cases. A bridge
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monitoring case study is used for demonstrating and
assessing the proposed database system.

2. Related Work

Although several various database management systems
have been proposed to support IFC data models, given the
constant evolution in the field of data management and
processing, we will only mention recent research that focuses
on the area of BIM data interoperability and storage.

For example, Li et al. [9] proposed an object-relational
storage model to support IFC models without loss of in-
formation. In their workflow, they proposed rules for
mapping between IFC data types and the Oracle database
where the parsed IFC data are stored in the corresponding
tables. 0e workflow was validated on a building model,
showing that no information was lost during the exchange of
data.

In the field of building performance management, Zhang
et al. [10] presented a scalable cyber-physical platform based
on the NoSQL database, in which they integrated building
information modelling and sensor network into a unified
structure. 0e proposed platform supports flexible structure
and horizontal scalability to deal with the challenges of big
data.

Jeong et al. [11] proposed a bridge monitoring data
management framework based on the NoSQL database
system Apache Cassandra, in which they stored the bridge
information model (BrIM), sensor data from the on-site
computer, and inspection information. In their workflow,
they used an XML-based bridge information model struc-
ture that was appropriately parsed and mapped to the
NoSQL column families to store the bridge geometry, in-
formation, and engineering model along with sensor in-
formation and data. 0e workflow was validated on a real
bridge, and they concluded that the proposed system en-
abled easier user queries and the use of large data for
monitoring purposes.

On the topic of graph databases, Ismail et al. [12]
proposed a methodology for developing graph data models
based on the IFC standard. In their workflow, they used
web services that use scripts to automatically parse IFC
models based on the EXPRESS schema and generate CSV
files containing the graph model data. 0ese can be
transferred to the Neo4j graph database using the gen-
erated commands and CSV files. 0e proposed graph data
models were validated on a case study model where they
showed simple queries, analysis of emergency routes from
the spaces included in the IFC model, and the possibility to
compare between different versions of the same model to
find out the differences that occurred during the
modelling.

Similarly, Zhao et al. [13] employed a graph database to
improve the merging of IFC data. 0ey proposed an IFC
graph data structure that preserves the relationships between
IFC instances. 0eir graph data model is based on three
types of nodes that distinguish between entities, single
values, and list values. 0is supports easier data mining,
which is required for their proposed data merging. 0ey

showed that IFC data can be clearly represented by graphs
and retain the structure of IFC models.

3. Graph-Based IFC and Sensor Representation

3.1. Data Schema of Industry Foundation Classes. 0e
common format of IFC files is STEP Physical Format (IFC-
SPF), a compact text format that stores data as a sequence of
instances, each containing an instance number, a class name,
and its attributes, describing the geometric and semantic
information of a BIMmodel [14].0e data schema is defined
by EXPRESS data models, which contain the specification of
classes and data types used in BIM modelling. Each class is
defined by the keyword ENTITY followed by the name and
class properties, which include parent-child relationships
and attributes specific to that entity (see Figure 1).

0e parent-child relationship is specified by supertype
and subtype, which specify the inheritance of properties, i.e.,
a single class inherits all the properties pertaining to each
parent class in the hierarchy, plus a specific class property if
it has one [15]. For example, in Figure 2, the first four at-
tributes of the IfcBeam instance belong to the class IfcRoot,
which is the first in the hierarchy, the next attributes are
inherited from IfcObject, IfcProduct, and IfcElement, while
the last attribute PredefinedType is the class attribute of
IfcBeam. 0e attributes can be represented with a single
value or an aggregation of values that can either be a ref-
erence to another instance, for example, the OwnerHistory
attribute is given as the instance number of the IfcOw-
nerHistory instance, or a simple data type such as real,
integer, number, logical, Boolean, binary, or string.

IFC data models, as defined in the EXPRESS language,
are inherently object-oriented. 0eir focus is on describing
objects, broken down into components and organized into
classes that are interconnected [16]. Because of their com-
plex structure, which is difficult for humans to read, it makes
sense to use graph data models for their representation since
they already use a graph structure in their definitions and
graphs are easier to understand [17].

3.2. Graph Database Management System. Graph database
management system or practically known as the graph
database is a platform where you can use create, read, up-
date, and delete operations on graph data models repre-
sented as nodes and relationships connecting them. 0e
most common form of graph is the labelled property graph,
where entities are represented as nodes connected by di-
rected edges (relationships), both of which can be labelled
and can contain any number of key-value attributes (see
Figure 3). 0is structure is expressive and general, which
allows to describe many real-world scenarios in graph forms
[8].

Compared to relational databases, graphs can handle
connected data with better performance, even as the amount
of data increases, because queries are limited to only a
portion of a graph. In addition, they provide a flexible
structure since we can include new types of nodes or re-
lationships without changing the existing function or queries

2 Advances in Civil Engineering



[8]. Although the use of graphmodels makes sense for highly
interconnected data, there are some general advantages: the
simplicity of graph representation; the graph data structure
enables the modelling data as it is represented in the real
world and can store all information in a node or in a re-
lationship; queries can be used directly on the graph
structure, from which a shortest path or various sup-graphs
can be extracted; already developed graph algorithms and
storage structures allow data to be efficiently stored and
called upon [17]. 0ough there are many graph database
systems, for this study, the Neo4j platformwas used, which is
known as a native graph database as it uses graph models for
both storage and processing [18].

3.3. IFC Graph Models. To facilitate IFC data with graph
models, we use a labelled property graph to semantically
describe IFC entities as labelled nodes and attribute refer-
ences as directed and labelled relationships. Our IFC graph
data model is designed to preserve the IFC structure so that
it can be mapped back to the IFC STEP model. However, it
can be easily modified by adjusting the node and relationship

structure in the Python script, and other authors [12, 13]
proposed slightly different IFC graph models depending on
the use case.

0e types of nodes are derived from two sources: one
directly from the instance classes (e.g., IfcBeam, IfcOw-
nerHistory, and IfcMaterial) and the other from the instance
attributes labelled according to the EXPRESS schema (e.g.,
IfcLabel, IfcText, and IfcValue). 0e IFC schema differen-
tiates between entities that are derived from IfcRoot, which
have a global identification number, owner history, name,
and description, and those in the resource layer that have no
identity [16]. In our graph structure, we assign identity
attributes to node properties as key-value pairs, rather than
creating separate nodes for these values. All other nodes can
have only one property (excluding the ID number), the value
of simple data type attributes.

To define the relationship between two nodes, each node
is assigned the ID number based on which they are con-
nected. 0e node of an instance class inherits the exact
instance number (e.g., #188), while the nodes derived from
the attributes receive an additional number based on the
order position of the attribute (e.g., #188_5). Each instance is

Attributes:

Hierarchy:

Entity name:
EXPRESS SPECIFICATION:
ENTITY IfcBeam
SUPERTYPE OF (IfcBeamStandardCase)
SUBTYPE OF (IfcBuiltElement);
PredefinedType : OPTIONAL IfcBeamTypeEnum;

WHERE
...

END_ENTITY;

Figure 1: EXPRESS specification for the IfcBeam class.

#188= IFCBEAM (
GlobalId,
OwnerHistory,
Name,
Description,
ObjectType,
ObjectPlacement,
Representation,
Tag,
PredefinedType
);

IfcRoot

IfcRoot IfcObjectDefinition

IfcObject

IfcObject
IfcProduct

IfcProduct
IfcElement

IfcElement
IfcBuildingElement

IfcBeam
IfcBeam

Figure 2: IFC attribute inheritance.

Company

Project

Name: BIM.company
Responsibility: BIM model
Deadline: 2021-08-01

Properties of a node

Node

Relationship

Properties of a
relationship

:DESIGNED_BY
start_date: 2021-01-01

:LOCATED_IN
City

Figure 3: Example of the labelled property graph.
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then either connected to another instance if the attribute
contains the referenced instance number or connected to a
created attribute node if it contains a simple value type. In
addition, each relationship is assigned a label based on the
attribute key name defined in the IFC EXPRESS schema
(e.g., OwnerHistory, Tag, and Representation) and an ID
number based on the position of the attribute (see Figure 4).

To address attribute aggregations, an additional node is
created, from which the aggregation is then separated into
single values, and the process is repeated, either creating
relationships to other instances or creating new nodes with
the separated values.

3.4. Sensor Graph Models. Sensor graphs are similar in
structure to IFC graphs. A single sensor is represented by a
sensor node that contains the name and description, while
other attributes, such as sensor type, are defined as a separate
node and connected to the sensor node to provide an or-
ganized structure and simplify querying.

Each sensor data measurement is represented as a node
containing the date, time, and value of the measurement and
is connected to a single node called sensor data, which in
turn is then linked to an associated sensor node (see Fig-
ure 5). Depending on the purpose, they can be divided into
nodes either by year or by any other measure.

3.5. Transformation Methodology. 0e developed method-
ology proposes a workflow to transform IFC models into
graph data and combine them with monitoring data from
sensors. 0e workflow can be divided into three parts: first,
the IFC model is converted into a graph form, then the
sensor entities are added and connected to the corre-
sponding IFC object, and finally, the sensor data are added in
batch or real-time capture and attached to the sensor entity
(see Figure 6). With this approach, we are able to store
different IFC models along with the sensor data in a single
graph database.

0e conversion of IFC models to graph data models is
based on the IFC EXPRESS schema. 0is workflow employs
Python scripts to automate the parsing of IFC STEP files and,
using the Python dictionary for IFC entities, converts in-
stances and their attributes into graph nodes and rela-
tionships with correct labels and properties. 0ese are
exported as CSV files and imported into Neo4j using the
batch admin import function, which is suitable for large
datasets [19].

Python dictionaries are created for each IFC class and all
its attribute key and value names as described in the selected
IFC EXPRESS schema retrieved from the buildingSMART
website [20]. Since, in the IFC EXPRESS schema, each class
contains only its specific class attributes without inherited
properties to avoid repetition, the script iterates over the
hierarchical structure and appends all parent attributes to
the specific class. Figure 7 shows the Python dictionary of the
class IfcBeam generated from the EXPRESS schema. It can
be seen that IfcBeam contains 9 attributes, which will match
the number of IfcBeam instance attributes in the IFC STEP

file. 0is step is performed once to create a dictionary of IFC
classes based on the selected IFC schema.

Mapping the IFC model to the graph form consists of
parsing each instance in the IFC STEP file for instance
number, class name, and attribute values. For each IFC
instance, a node instance is created using the reference
number as ID, the class name as the label, and the identity
attributes as the node properties if the instance has any.
Next, the script goes through each instance attribute, and
if it is a reference number, it creates a relationship be-
tween the current instance and the referenced instance,
containing a label derived from the attribute name, which
is quickly found using the Python dictionary from earlier.
If an attribute value is of a single data type, the script
creates a node with a label of the attribute value type and
a relationship connecting an instance and an attribute
with a label of the attribute name, which again is found in
the dictionary (see Figure 8). Created node and rela-
tionship instances are exported to CSV files, which are
brought into the Neo4j database using the Admin Import
function.

Sensor entities are added to the graph database using the
Neo4j query language Cypher [6], which can be connected to
Python via the Neo4j Python driver. Sensor nodes and re-
lationships connecting them to the IFC sensor element can
be simply created using the MERGE command and state-
ments to create nodes (variable:label {name:”value”}) and
edges (node 1)-[:LABEL]-(node 2). Similarly, sensor data are
added in real time by executing the Cypher commands or in
batch by using the CSV file and the LOAD CSV function in
Neo4j.

4. Case Study

IFC and monitoring database system based on graph data
models was illustrated with a simulated test problem in-
volving the BIM model of a bridge with monitoring sensor
elements at various positions on the beams (see Figure 9).
0e monitoring elements represent strain gauge sensors and

IfcIdentifier
IfcBeamType

Enum

IfcProduct
DefinitionS...

IfcBeam IfcOwnerHis-
tory

IfcLocalPlac-
ement IfcLabel

TAG

OWNERHISTORY

OBJECTTYPE

PREDEFIN
EDTYPE

REPRESENTATION

OBJE
CTPL

ACEM
ENT

Figure 4: Graph data model for the IfcBeam entity.
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Figure 5: Graph data model for the sensor and its measurements.

IFC Express 
schema

Dictionary of 
IFC entities

IFC file

Python scripts

Neo4j graph database

parsed IFC
entities .csv filesnodes and
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Figure 6: Workflow for converting IFC and sensor data into a graph database.

IFCBEAM:
{ GlobalId : IfcGloballyUniqueId,
OwnerHistory : IfcOwnerHistory,
Name : IfcLabel,
Description : IfcText,
ObjectType : IfcLabel,
ObjectPlacement : IfcObjectPlacement,
Representation :IfcProductRepresentation, 
Tag : IfcIdentifier,
PredefinedType : IfcWallTypeEnum}

Figure 7: Python dictionary of class IfcBeam with its attribute key-value pairs.

#188= IFCBEAM ('3�JLl6Zz9BuoeKdndSIFV',#42,'Beam',$,'Generic', ... );

Node:
Label: IFCBEAM
Id: #188
GlobalId: '3�JLl6Zz9BuoeKdndSIFV'
Name: 'Beam'
Description:

Node:
Label: IFCLABEL
Id: #188_5
Value: 'Generic' 

Relationship:
#188
Label: OWNERHISTORY

Relationship:
#188
Label: OBJECTTYPE

#42 #188_5

Figure 8: Example of nodes and relationships created from an IfcBeam instance.
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are accompanied withmeasurement data over several days at
one-minute intervals.

0e BIM model was created in Revit modelling software
and exported using IFC4 Design Transfer View settings. 0e
IFC model was mapped into nodes and relationships using
Python scripts based on the IFC4 EXPRESS specification and
exported to CSV files, which were imported into Neo4j using
the Admin Import function to create IFC graph data models.
0e IFC graph structure can be seen in Figure 10, where
three distinct clusters can be identified. 0e first cluster
contains the semantic information of the model and the
building elements, the second cluster represents information
about the units used in the model, and the third cluster is the
geometry information of the model.

0e sensor graph models were created by executing the
commands in the Cypher query language:

MERGE (s:Sensor{Name:“P14_N4_MM7-T”,Descrip-
tion:“Weighing”})
MERGE (t:SensorType{Name:“Strain_Gauge”})
MERGE (m:Manufacturer{Name:“TML”})
MERGE (s)-[:HAS_PROPERTY]->(t)
MERGE (s)-[:HAS_PROPERTY]->(m)

0e first three commands create a sensor instance node
and attribute nodes for the type and manufacturer of the
sensor, while the last two commands connect the instance
with its properties.

Sensor data consisted of 10 days of measurements of
one-minute average strains and the date and time of each
measurement. 0e data were brought in a CSV file, batch
transferred to the graph database using the LOAD CSV
function, and attached to the sensor instance node. To
simulate real-time data, a Python script was connected to the
graph database via the Neo4j Python driver, from where
Cypher commands were executed in real time using the

MERGE command to first create a node with measurements
and then connect it to the sensor data node.

To retrieve the beam or sensor element from the IFC
graph model, a simple query was used:

MATCH p�(n:IFCBUILDINGELEMENTPROXY)-
[∗1]->(p1) RETURN p

0is returns all nodes with a label IFCBUILDINGE-
LEMENTPROXY to which the beam and sensor element
belong because they were created with a custom generic
family. In addition, the query retrieves all attribute nodes
that are associated with the building proxy element node (see
Figure 11).

Retrieval of sensor elements and associated measure-
ment data can be done by the following query:

MATCH (s:Sensor{Name:“P14_N4_MM7-T”})
MATCH d�(n:SensorData{Name:“P14_N4_MM7-T”})-
[:HAS_VALUE]->(v:Values)
WHERE date(v.measured)� date(“2019-07-01”)
RETURN n,s,d

Here, we can restrict the measurement data to a specific
date or time by using the conditional statementWHERE and
return the sensor element and its data measured on the
specified date (see Figure 12). In this way, we can retrieve any
sensor, its measured data, and its connection with the IFC
element or a location of the sensor.

5. Discussion

Using graph data models, we have shown that they are able
to handle different types of data involved in facility
management and structural health monitoring. Using
graphs to facilitate IFC models and any real-time mon-
itoring data can be seen as an integrated alternative to the

Beam 1

P22_N1

P14_N1 P26_N1
P26_N2

P26_N3
P26_N4

P14_N2
P14_N3

P14_N4

P22_N2
P22_N3

P22_N4

Beam 2
Beam 3

Beam 4

Figure 9: Example IFC model of a beam with sensors.
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current practice of using isolated systems, each managing
one type of data. 0e deployment of a single flexible
management system can be seen as an important step
towards digital twins and smart cities as advances in fa-
cility management and sensor technologies will increase
the number of management applications and data gen-
erated, increasing the demand for efficient data sharing,
storage, and interoperability.

0e use of a graph-based IFC management system can
provide the BIM manager with many advantages. First, we
can address the complex and difficult-to-read schema of raw
IFC files. By employing graph data models to represent IFC
data, we are able to see their interrelated structure and use

graph algorithms to perform complex queries to traverse the
subgraphs and modify their data while still preserving the
original structure. Additionally, the graph structure is
flexible and allows changing the data structure and adding
new data points and connections. Moreover, in our pro-
posed workflow, we have included semantic enrichment of
IFC graph data models by making use of the IFC EXPRESS
schema to add names and types to attribute nodes and
connections, making it easier for the user to understand and
find the information pertaining to IFC elements. Second,
graph data management systems can be used as an un-
derlying system for structural health monitoring or other
higher levels of cyber-physical systems, allowing BIM

Unit information
cluster

Geometry information
cluster

Semantic information
cluster

Figure 10: Graph representation of the IFC model of a single BIM element.
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managers to store the data in one place and access them
efficiently for other applications. However, as others have
shown, graph data models are not limited to use as storage,
but allow BIM managers to use them for other applications,
such as comparing models to find changes between different
versions [12], analysis of emergency routes [12], and IFC
data merging [13]. 0ird, to ensure interoperability, both
IFC and Neo4j graph data models follow open standards and
can be used by other applications, allowing for collaborative
work without closed environments.

6. Conclusions

In this research work, a flexible and scalable IFC graph data
model is proposed, focusing on preserving the IFC data
structure and supporting the linkage between information
models and associated real-word monitoring data. In par-
ticular, the proposed workflow describes the transformation
of IFC models into a graph database where sensor entities
link the building information model with sensor data. 0is
approach was validated through a case study of a bridge IFC
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Figure 11: Getting the beam and sensor instances and their attributes.

Figure 12: Retrieval of the sensor element and data for a certain date.
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model linked to monitoring data, showing that IFC data can
be represented as a collection of nodes and relationships.

Proposed graph data models can be modified by in-
troducing other schemas into the workflow. Together with
the unified database system, this provides a flexible and
scalable structure that can be adapted to future use cases and
provides a consistent foundation for cyber-physical systems.

To increase the validity of this research, future work will
address higher levels of cyber-physical systems by utilizing
the graph database as the underlying system fromwhich data
analysis and visualizations will be performed on a use case of
a real-world structure with a large sensor network.

Data Availability

0e IFC file and monitoring data used in this research are
available at https://github.com/IFCManager/
IFC_Graph_Database.
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