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A B S T R A C T   

Heavy rainstorms play a central role in the water-driving soil erosion processes. An in-depth knowledge about 
temporal and spatial erosivity of rainfall events is required to gain a better understanding of soil erosion pro
cesses and optimize soil protection measures efficiency. In this study, the spatiotemporal distribution of more 
than 300,000 erosive events measured at 1181 locations, part of the Rainfall Erosivity Database at European 
Scale (REDES) database, is studied to shed some new light on the rainfall erosivity in Europe. Rainfall erosive 
events are statistically investigated through the Lorenz curve and derived coefficients such as the Gini coefficient 
(G). Additionally, seasonal characteristics of the most and the less erosive events are compared to investigate 
seasonal characteristics of rainstorms across Europe. The G shows largest values of inequality of the inter-annual 
temporal distribution of the rainfall erosive events in the Alpine region, mostly due to the large number of 
rainfall events with smaller rainfall erosivity. While for other parts of Europe, the inequality described by the G is 
mostly due to a small number of high erosive events. The G slightly decreases from south to north while no clear 
regional patterns can be detected. Additionally, in Europe, on average 11% (ranging from 1 to 24%) of all erosive 
events contribute to form 50% of the total rainfall erosivity. Furthermore, higher erosive rainfall events tend to 
occur later in the year compared to less erosive events that take place earlier. To our knowledge, this study is the 
first one addressing event scale rainfall erosivity distribution using more than 300,000 rainfall erosivity events 
and covering almost a whole continent. Scientifically our findings represent a major step towards large-scale 
process-based erosion modelling while, practically, they provide new elements that can support national and 
local soil erosion monitoring programs.   

1. Introduction 

Erosion by water is considered as one of the leading causes of land 
degradation and an important environmental hazard. Contemporary 
studies conducted in Europe and other continents pointed out that this 
type of erosion is probably the most frequently studied and can yield 
high erosive rates (Bezak et al., 2021b; Borrelli et al., 2021, 2017; Lukić 
et al., 2019, 2018b, 2016; Panagos et al., 2015b). Rainfall erosivity is an 
index that quantitatively describes the water-driving force for soil 
erosion (Nearing et al., 2017; Panagos et al., 2015a). It is often regarded 
as one of the most important factors affecting the spatial and temporal 
variability of several soil erosion displacement processes such as gully
ing, sheet and rill erosion, subsurface erosion and landslides (Almagro 
et al., 2017; Beguería et al., 2018; Bezak et al., 2020, 2015b; Borrelli 
et al., 2016; Ferro et al., 2020; Panagos et al., 2016a). Expressed as the 

product of the total kinetic energy of a rainfall event times its 30-minute 
maximum rainfall intensity (Wischmeier and Smith, 1978), its accurate 
calculations requires high-resolution pluviographic data (ideally 5-min
ute time step), which are generally not available over large study areas 
and time periods (Petek et al., 2018). Accordingly, frequently available 
daily and monthly rainfall data are generally used (Beguería et al., 2018; 
Liu et al., 2020). Especially while performing large-scale assessments, 
such as the continental ones, where the aim is to identify potential soil 
erosion risk areas and to support the development of field scale obser
vations and mitigation strategies (Liu et al., 2020). 

Furthermore, national or regional data providers often cannot pro
vide large amounts of high-resolution precipitation data, or cannot 
provide them free of charge. Therefore, a database resulting from 
collaborative research activities such as the Rainfall Erosivity Database 
at European Scale (REDES) that includes rainfall erosive event 
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information from more than 1500 European stations (Ballabio et al., 
2017; Bezak et al., 2020; Panagos et al., 2017, 2016b), constitute a 
suitable option for regional and continental scale studies. In addition, 
being based on sub-hourly and hourly records, REDES allows to inves
tigate the characteristics of rainfall erosive events. Alternatively, one 
could use high-resolution-satellite-based precipitation products instead 
of interpolating ground-based rain-gauge observations (Kim et al., 
2020). The topic is of great importance since erosive rainfall may further 
increase in both frequency and intensity due to climate change (Borrelli 
et al., 2020) and several open questions need to be further addressed to 
enhance knowledge about erosion processes. 

Different studies have investigated characteristics of rainfall erosive 
events at smaller scales in Europe such as Switzerland (Meusburger 
et al., 2012), Italy (Borrelli et al., 2016), Calabria (Capra et al., 2017), 
Greece (Panagos et al., 2016a), island of Crete (Grillakis et al., 2020), 
Slovenia (Petek et al., 2018), Netherlands (Lukić et al., 2018a), a large 
basin including parts of Serbia, Hungary and Croatia (Lukić et al., 2019, 
2016) and NE Spain (Angulo-Martínez and Beguería, 2012), among 
others. Some studies have also analyzed seasonal and monthly charac
teristics of rainfall erosivity (Angulo-Martínez and Beguería, 2012; 
Borrelli et al., 2016; D’Asaro et al., 2007; Meusburger et al., 2012; 
Panagos et al., 2016a; Vallebona et al., 2015). Ballabio et al. (2017) used 
the REDES database to analyze the monthly rainfall erosivity charac
teristics in Europe but without observing the seasonal dynamics and 
contributions of the most erosive events. Several other studies were 
performed on this topic outside Europe, the most recent ones include a 
study about climate change impact on erosivity in Brazil (Almagro et al., 
2017), analyzing the spatiotemporal variability in rainfall erosivity in 
mainland China for the period 1960–2018 (Chen et al., 2020), in the 
Loess Plateau of China for the period 1971–2010 (Cui et al., 2020), and 
at the continental scale in the United States for the period 1998–2015 
using a high-resolution-satellite-based precipitation data (Kim et al., 
2020) or at the global scale for the period 1980–2017 using daily pre
cipitation data (Liu et al., 2020). 

Rainfall erosivity at continental scale is highly variable in space and 
time (Ballabio et al., 2017; Bezak et al., 2020; Panagos et al., 2015a). 
Accordingly, further in-depth knowledge about the temporal and spatial 
distribution of heavy rainfall events is needed to better address soil 
erosion and its related environmental and economic issues (Lal, 1998). A 
possible approach to effectively describe the temporal distribution and 
variability of rainfall erosive events at a station level may be represented 
by the use of the Lorenz curve (Lorenz, 1905; Masaki et al., 2014); which 
is frequently applied in economics studies to represent the inequality of 
the wealth distribution in a society (Lorenz, 1905). This concept has 
been applied to the environmental data multiple times (e.g., Jawitz and 
Mitchell, 2011; Masaki et al., 2014; Shi et al., 2013) and multiple au
thors have stated that the Lorenz curve is an effective way of assessing 
rainfall distribution (Shi et al., 2013). Therefore it can also be used to 
assess rainfall erosivity distribution. Based on the Lorenz curve, different 
scalar measures of inequality such as Gini coefficient (G) (Gini, 1914) or 
Lorenz coefficient of asymmetry (LA) can be calculated to analyze the 
temporal distribution characteristics presented by the Lorenz curve. As 
pointed out by some studies, the Gini coefficient as a single scalar value 
can be an insufficient measure of inequality presented by a Lorenz curve 
(Clementi et al., 2019; Tarsitano, 1988). Therefore, additional coeffi
cient such as Lorenz coefficient of asymmetry can be applied. Ap
proaches based on Lorenz curve were applied in numerous other fields 
such as ecology (Damgaard and Weiner, 2000) and hydrology (Jawitz 
and Mitchell, 2011; Masaki et al., 2014), among others. These co
efficients have been quite frequently applied to various hydrological 
problems such as temporal distribution of river discharge (Jawitz and 
Mitchell, 2011; Masaki et al., 2014) or analyzing precipitation charac
teristics (Martin-Vide, 2004; Monjo and Martin-Vide, 2016; Rajah et al., 
2014; Royé and Martin-Vide, 2017; Sangüesa et al., 2018; Shi et al., 
2013; Sun et al., 2017; Yin et al., 2016). However, to the best of our 
knowledge, investigation of temporal variability of rainfall erosivity 

using the Lorenz curve, and its scalar measures, have not yet been 
attempted; not even at regional or local scale. Thus, the Lorenz curve can 
provide a graphical view of the cumulative percentage of erosive rainfall 
events and G and LA can provide an explanation of the underlying in
equalities in the distribution of erosive rainfall events (Shi et al., 2013). 

Among others, the focus is to explore and address the following 
research questions: a) what is the distribution and frequency of the most 
erosive rainfall events in comparison to less erosive rainfall events; b) 
what is the percentage of erosive rainfall events that contribute to the 
50% of the total annual erosivity; c) what are the seasonal characteris
tics of the most erosive rainfall events and d) how do these character
istics change across Europe. The 50% threshold was also used by 
González-Hidalgo et al. (2009) when studying effect of the largest events 
on the total soil loss. In order to answer these questions, the temporal 
distribution and the seasonal characteristics of the rainfall erosive 
events have to be studied at the continental scale. As a first step, a 
preliminary study of the temporal distribution of rainfall erosive events 
at the station level was conducted. It comes as no surprise that erosive 
rainfall erosivity events at precipitation (gauging) measuring stations 
are not evenly distributed throughout the year (Angulo-Martínez and 
Beguería, 2012; Meusburger et al., 2012). A conspicuous number of 
observations across the earth confirmed that a few (i.e. up to 10–15%) 
heavy rainstorms are responsible for the large part of annual rainfall 
erosivity (Borrelli et al., 2016; Meusburger et al., 2012; Petek et al., 
2018) and consequently also for the larger part of the total soil erosion 
rates (Bagarello et al., 2011; González-Hidalgo et al., 2009). As a 
consequence, a mere counting of rainfall erosive events does not say 
much about the actual annual rainfall erosivity that is important to es
timate soil loss or land degradation due to soil erosion (Borrelli et al., 
2020; Panagos et al., 2015b; Yin et al., 2017). 

Therefore, the overall aim of this study is to enhance the current 
knowledge on rainfall erosive events characteristics at the European 
scale by introducing the analysis of the Lorenz curves including two 
scalar measures of their unequal distribution: i.e., Gini coefficient (G) 
and Lorenz asymmetry coefficient (LA). In addition, a further aim of this 
study is to propose novel indicators of rainfall erosivity to more 
comprehensively address its spatiotemporal distribution and patterns 
since scalar measures such as G can capture the variability in the dis
tribution of rainfall erosive events and express it with a numeric value. 

In the scope of the presented paper, the following hypothesis are 
investigated: (i) in Europe, different spatial patterns of Gini coefficient 
(G) calculated based on the erosive rainfall event data can be observed; 
(ii) the derived G can be related to the total annual rainfall erosivity; (iii) 
the share of the rainfall erosive events that contribute to the 50% of the 
total erosivity changes across Europe; (iv) seasonal characteristics of the 
most erosive rainfall events are significantly different than those of all 
other rainfall erosive events, and (v) stations showing similar G values 
may significantly differ in the Lorenz asymmetry coefficient (LA), as a 
result of their different heterogeneity. The data used and the method
ology applied to address these hypotheses are presented in the following 
section. 

2. Data and methods 

2.1. REDES database and derived products 

The Rainfall Erosivity Database at European scale (REDES) is the 
result of a collaborative effort to collect sub-hourly and hourly rainfall 
data across EU Member states and Switzerland (Ballabio et al., 2017; 
Panagos et al., 2017, 2015a). Based on the detailed rainfall records 
collected for 1675 stations, the rainfall erosivity values of each erosive 
storm were calculated (Panagos et al., 2015a). Afterwards, these were 
aggregated to form monthly and annual values. Accordingly, the REDES 
database includes three main components: i) the rainfall erosivity values 
of each single rainfall erosive event (including date, rain [mm], duration 
[h] and maximum intensity [mm/h]), ii) mean monthly values of 
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rainfall erosivity, and iii) mean annual values of rainfall erosivity. The 
annual erosivity is publicly available for 1675 stations and the monthly 
erosivity is available for 1567 stations (total: 18,804 records of mean 
monthly values). The conversion factors (Panagos et al., 2016b) were 
used in order to harmonize different temporal data resolution (5- to 60- 
min) to a temporal resolution of 30-min. 

Aggregating the single rainfall erosive events, the six rainfall 
erosivity clusters that were derived using the K-means methodology 
were mapped (Ballabio et al., 2017). An overview of multiple applica
tions based on the REDES database is shown in Table 1. The main idea of 
applying the K-means clustering method to the monthly rainfall 

erosivity maps is to obtain an optimal number of relatively homogenous 
areas from the seasonal rainfall erosivity perspective (Ballabio et al., 
2017). Thus, as a result six homogeneous areas were identified (Ballabio 
et al., 2017). Cluster (i.e. zone) 1 covers areas of Eastern Europe while 
clusters 2 and 3 cover larger part of EU (Northern and Western Europe). 
Cluster 4 includes major parts of the Southern Europe while cluster 5 is 
limited to parts of United Kingdom, France, etc. Cluster 6 is the smallest 
and is limited to the Alpine region. Thus, every cluster zone is charac
terized by distinct seasonal erosivity characteristics (Ballabio et al., 
2017). Therefore, the K-means cluster map is also used in this study to 
provide new knowledge about erosivity characteristics in different parts 
of Europe. 

With the exception of Italy (Borrelli et al., 2016), the characteristics 
of the single REDES rainfall erosive events have not been explored in 
detail so far. Due to data access limitations and privacy issues, the single 
rainfall erosive events records data are available for 1181 gauging sta
tions (71% of the REDES database). Nevertheless, REDES currently hosts 
detailed information for more than 300,000 rainfall erosive events. This 
means that more than 250 rainfall erosive events per station is available, 
distributed over the period 1953–2014. The pluviographic records cover 
periods ranging from a minimum of three years to a maximum of 72 
years, with an average period of around 16 years. Furthermore, it should 
be noted that rainfall erosive events in the REDES database were iden
tified according to the RUSLE methodology (Renard et al., 1997) where 

Table 1 
Overview of studies that used REDES database with some basic information.  

Study area Temporal 
scale 

Observed 
period 

Spatial 
interpolation 

Reference 

Switzerland Annual Present Regression- 
kriging 

(Meusburger 
et al., 2012) 

EU-28 Annual Present Gaussian 
Process 
Regression 

(Panagos et al., 
2015a) 

Greece Annual Present Generalised 
Additive Model 

(Panagos et al., 
2016a) 

EU-28 Monthly Present Gaussian 
Process 
Regression 

(Panagos et al., 
2016b) 

Italy Rainstorms/ 
monthly 

Present Regression- 
kriging 

(Borrelli et al., 
2016) 

EU-28 Monthly Present Gaussian 
Process 
Regression 

(Ballabio et al., 
2017) 

EU-28 Annual Future Gaussian 
Process 
Regression 

(Panagos et al., 
2017) 

EU-28 Annual Past/ 
present 

Gaussian 
Process 
Regression 

(Bezak et al., 
2020) 

EU-27 + UK Annual Present – (Bezak et al., 
2021a) 

EU-27 + UK Rainstorms Present – Current study  

Fig. 1. Three examples of Lorenz curves (i.e. black line) and calculated Gini coefficients (G), normalized Gini coefficients (G*), Shannon entropy (H), Lorenz 
asymmetry coefficient (LA), total annual rainfall erosivity (R) and R50 threshold (Section 2.3) for all rainfall erosive events for selected three stations that are 
included in the REDES database. One station from United Kingdom (UK) (i.e. Moor House), station from Sweden (SE) (Overkalix-Svartbyn) and station from Italy (IT) 
(Taverna) are shown. Blue line indicates line of perfect equality. The red line indicates the D50 threshold value (Section 2.3). The station numbers are the IDs in the 
REDES database (e.g. UK1509 is the REDES ID = 1509). The definitions of S (i.e. blue area) and A (i.e. yellow area) are provided in relation to Eq. (2). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
A hypothetical distribution of the 10 erosive events with total erosivity of 1000 
MJ mm ha− 1h− 1 and the corresponding values of Gini coefficient (G), Shannon 
entropy (H) and Lorenz asymmetry coefficient (LA).  

Case Rainfall erosivity events [MJ mm ha− 1h− 1] G H LA 

1 977, 2, 1, 2, 3, 4, 5, 1, 2, 3 0.88 0.23 1.03 
2 770, 20,10,20,30,40,50,10,20,30 0.73 1.47 1.19 
3 98,102,97,103,95,105,100,100,92,108 0.03 3.32 0.98 
4 20,130,191,50,1,30,90,160,60,268 0.45 2.82 0.91 
5 1,2,4,3,5,185,210,185,205,200 0.50 2.43 0.67 
6 10,20,40,30,50,160,190,165,185,150 0.39 2.90 0.78  
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detailed description is provided by Panagos et al. (2015a). 
Similarly as Bezak et al. (2021a) that investigated the drivers of the 

rainfall erosivity synchrony scale in Europe, in this study the same 
datasets (listed below) are used in order to investigate the drivers of the 
diverse rainfall erosivity characteristics that can be found in Europe and 
can be described using the Lorenz curve. Additional climatic data used in 
this analysis are (i) data obtained from the European Centre for Medium- 
Range Weather Forecasts (ECMWF), namely convective precipitation 
(CP; accumulated rain and snow as part of the convection scheme in the 
ECMWF), convective available potential energy (CAPE; indicator of the 
instability of the atmosphere), large-scale precipitation (LSP; accumu
lated rain and snow as part of the cloud scheme in the ECMWF) and 
large-scale precipitation fraction (LSPF; accumulation of the LSP in the 
specific grid box), ii) the map of annual number thunderstorm days in 
Europe (Enno et al.,2020) as an indicator of the thunderstorm fre
quency, and iii) the erosivity synchrony scale estimates (Bezak et al., 
2021a). Detailed description of these datasets can be found in Bezak 
et al. (2021a). The idea behind using these datasets is to evaluate if any 
of these can be regarded as an important driver of the erosivity char
acteristics that can be described using the Lorenz curve and its derived 
scalar measures. 

2.2. Lorenz curve, Gini coefficient and Shannon entropy 

In order to investigate the temporal distribution of the REDES rain
fall erosive events across Europe, the Lorenz curve (Lorenz, 1905), non- 
dimensional Gini coefficient (G) (Gini, 1914), Lorenz asymmetry coef
ficient (LA) (Tarsitano, 1988), normalized Gini coefficient (G*) and 

Shannon entropy (H) coefficient (Shannon, 1948) are calculated. Those 
coefficients have already found wide acceptance in hydrological 
research (Ceriani and Verme, 2012; Damgaard and Weiner, 2000; Jawitz 
and Mitchell, 2011; Masaki et al., 2014). As pointed out by Masaki et al. 
(2014), the Lorenz curve and its parameters (scalar measures) are not 
only useful for the quantitate evaluation of the rainfall erosivity but also 
for graphical expression of the rainfall erosivity patterns across larger 
geographical units, such as Europe in our study. The Lorenz curve relates 
the accumulation of the selected variable and its cumulative frequency 
(Jawitz and Mitchell, 2011; Monjo and Martin-Vide, 2016) and can be 
according to Gastwirth (1971) be expressed as: 

L(p) =
∫ p

0
F− 1(t)dt/μ (1) 

In case that one assumes that X is a random variable with the cu
mulative distribution function (cdf) F(x) and F− 1(t) is the inverse 
(Gastwirth, 1971). Thus, the Lorenz curve L(p) corresponds to any 
random variable with cdf and finite mean μ (Gastwirth, 1971). Based on 
the derived Lorenz curve, the G can be calculated as the ratio of (Jawitz 
and Mitchell, 2011; Monjo and Martin-Vide, 2016):  

– area between the line of perfect equality and the Lorenz curve (S as 
shown in Fig. 1);  

– area under the line of the perfect equality (S + A as shown in Fig. 1). 

Graphical examples of the Lorenz curve and corresponding G can be 
seen in Fig. 1. According to the notions used in Fig. 1, G can be calcu
lated as (Monjo and Martin-Vide, 2016): 

G = S/(S+A) (2)  

where S and A can both be in the range between 0 and ½, and the G 
between 0 and 1. The value of the G close to 1 indicates significant 
inequality (A goes to 0), while a G value close to 0 (S goes to 0) indicates 
no inequality. In terms of rainfall erosivity, a G value of 0 indicates that 
all single rainfall erosive events have similar erosivity (i.e. no seasonal 
variation), while a G value close to 1 indicates that there is a range of 
erosivity with clear difference between more and less erosive rainfall 
events. Three examples of the Lorenz curve, corresponding G and 
normalized Gini coefficients (G*) are shown (Fig. 1). The normalization 
is used to define the G*. As shown in Fig. 1, G and G* are almost identical 
for the case of the rainfall erosivity. 

The H can be used to assess the variability in environmental data 
such as rainfall or discharge (Mishra et al., 2009; Rodrigues da Silva 
et al., 2016, 2017) and is also calculated using rainfall erosivity data in 
this study. The H (Cowell, 2000; Jost, 2006; Shannon, 1948) is a mea
sure of information (in bits) where more information results in lower 
entropy and vice versa (Mishra and Ayyub, 2019; Rodrigues da Silva 
et al., 2016; Shannon, 1948). To access the diversity of rainfall erosivity, 
richness would be a measure of the number of different classes of rainfall 
erosivity present at a rainfall gauging station, and evenness compares 
the similarity of the number of rainfall events in each of erosivity classes. 
Hence, a system (one rainfall station) with a high degree of richness and 
evenness would have a higher entropy, whereas a system (another 
rainfall station) with low degree of richness and evenness would have a 
low entropy. As a consequence, a system with high richness but low 
evenness would have a lower entropy than a system with high richness 
and high evenness (Rajaram et al., 2017). The H has been used to rethink 
diversity within probability distributions, based on the notion of infor
mation and can be expressed as (Mishra et al., 2009; Rodrigues da Silva 
et al., 2016; Shannon, 1948; Signorell, 2020): 

H = −
∑

(πlog(π)) (3) 

where π is the probability of discrete random variable to occur, H is a 
measure of information in bits (less information results in higher en
tropy and vice versa) and H ranges from 0 to ∞ (Rodrigues da Silva et al., 

Table 3 
Main descriptive statistics of Gini coefficients (G), Lorenz asymmetry co
efficients (LA) and Shannon entropy (H) for all 1181 stations. Mean values are 
marked as bold text. Possible ranges of G, LA and H values are also provided.  

Gini coefficient (G) [0,1] Minimum 0.4 
25th percentile 0.57 
Mean 0.61 
75th percentile 0.65 
Maximum 0.78 
Standard deviation 0.06 

Lorenz asymmetry coefficient (LA) [0,2] Minimum 0.84 
25th percentile 1.00 
Mean 1.04 
75th percentile 1.08 
Maximum 1.22 
Standard deviation 0.06 

Shannon entropy (H) [0,∞)  Minimum 2.80 
25th percentile 5.76 
Mean 6.44 
75th percentile 7.07 
Maximum 10.82 
Standard deviation 1.1  

Table 4 
Basic statistics of Gini coefficients (G), Lorenz asymmetry coefficients (LA) and 
Shannon entropy (H) for different K-means clusters as defined by Ballabio et al. 
(2017). Mean values are marked as bold text.   

K-means 
cluster 

1 2 3 4 5 6 

Gini coefficient 
(G) 

Minimum 0.44 0.42 0.40 0.45 0.48 0.62 
Mean 0.63 0.59 0.60 0.62 0.63 0.69 
Maximum 0.75 0.75 0.78 0.77 0.76 0.78 

Lorenz 
asymmetry 
coefficient 
(LA) 

Minimum 0.88 0.84 0.90 0.88 0.93 0.94 
Mean 1.03 1.06 1.06 1.02 1.02 0.97 
Maximum 1.16 1.21 1.22 1.16 1.14 1.01 

Shannon 
entropy (H) 

Minimum 3.97 2.8 2.86 3.84 3.78 6.67 
Mean 6.58 5.92 6.36 6.57 6.76 7.61 
Maximum 9.41 9.45 9.97 10.82 9.78 8.53  
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2016; Signorell, 2020). As stated by Rajaram et al. (2017) it cannot be 
used to compare diversity distributions that have different levels of 
scale. Jost (2006) concluded that H is not a poor coefficient of diversity; 
on the contrary, it is the most profound and useful of all diversity 
indices, but its value gives the uncertainty rather than the diversity. If H 
is chosen as a diversity coefficient, then all communities that share a 
particular value of H are equivalent with respect to their diversity (ac
cording to this coefficient). As such, it is an adequate measure for esti
mating diversity in annual rainfall erosivity among gauging stations in 
Europe. As indicated by Mishra et al. (2009), the maximum value of H is 
obtained if all rainfall erosivity values have the same probability of 
occurrence. On the other hand, a value of H close to zero is obtained in 
case that probability of single rainfall erosivity value is close to 1 and for 
all others close to 0 (Mishra et al., 2009). As noted by Mishra et al. 
(2009), in such a case one has a complete information about the state the 
system is in. Thus, H indicates our uncertainty about the rainfall 
erosivity state (Mishra et al., 2009). 

The Lorenz asymmetry coefficient (LA) is also used in this study 

because different shapes of the Lorenz curve can yield the same G value 
and thus asymmetry coefficient can be regarded as a supplement coef
ficient (Damgaard and Weiner, 2000; Masaki et al., 2014): 

LA = F + L (4)  

F =
m + δ

n
(5)  

L =

∑m
i=1qi + δqm+1
∑n

i=1qi
(6)  

δ =
Q − qm

qm+1 − qm
(7)  

where m is the number of rainfall erosivity events with a value less than 
mean rainfall erosivity (Q), n is the sample size, qi is sorted rainfall 
erosivity data used to plot the Lorenz curve (Damgaard and Weiner, 
2000; Masaki et al., 2014). With the introduction of the LA two Lorenz 

Fig. 2. Gini coefficients (G) for the 1181 stations across Europe using all rainfall erosive events included in the REDES database. As a background map, the six K- 
means clusters as defined by Ballabio et al. (2017) are shown. 
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curves with identical G value can be distinguishable in terms of their 
asymmetry. More specifically, there is a difference if LA is larger or 
smaller than 1, while a value of 1 indicates a symmetric Lorenz curve. 
When analyzing future changes in flow regimes Masaki et al. (2014) 
interpreted LA coefficient as follows: when LA > 1, the inequality is 
mostly due to a small number of very large river discharges; whereas LA 
< 1, the inequality is due to a large number of very small discharges. In 
our study on rainfall erosive events, LA > 1 means that the inequality 
can be attributed to a small number of high erosive rainfall events while 
in the case when LA < 1, the inequality is due to a large number of low 
erosive rainfall events. One must bear in mind that rainfall erosive 
events can be quite intermittent when compared to flow discharges in 
rivers that is often a more continuous process. 

As an illustrative example, in order to have a better understanding of 
above described coefficients, a hypothetical case of ten different erosive 
events is presented (Table 2). Thus, in all six presented cases, the total 
erosivity of these ten events is 1000 MJ mm ha− 1h− 1. The main differ
ence between the presented cases is the temporal distribution of the 
rainfall erosivity between the events. Therefore, in some cases events are 
similar to each other, while in other cases some events are much larger 
than others. 

All the calculations are performed using R software and using 
‘REAT’, ‘ineq’ and ‘DescTools’ packages (Signorell, 2020; Wieland, 
2019; Zeileis and Kleiber, 2014). All erosive rainstorms (more than 
300,000) included in the REDES database are used in the calculation of 
the above-mentioned coefficients. Thus, for every station, all available 
data is used to construct the Lorenz curve and calculate above 
mentioned metrics. 

Fig. 3. Relationship between calculated Gini coefficients (G) and corresponding annual rainfall erosivity (R) and erosivity density (R/P) for the investigated 
1181 stations. 

Fig. 4. Relationship between calculated Gini coefficient (G) and annual num
ber of thunderstorm days (TD) and large-scale precipitation fraction (LSPF) for 
the investigated 1181 stations. The values shown in the header are Pearson 
correlation coefficients and the surface is a regression plane for linear regres
sion LSPF ~ G + TD. 
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2.3. Threshold values and seasonality characteristics 

The threshold values used in this study are important for better un
derstanding of the Lorenz curve and rainfall erosivity characteristics 
across Europe. Therefore, the focus is also on the erosivity threshold 
value that is indicated in Fig. 1 and labelled as D50, and on the corre
sponding rainfall erosivity value R50. The D50 shows the percentage of 
rainfall erosive events that contribute to the 50% of the total erosivity 
(the x-axis on Fig. 1 corresponding to the 50% of the y-axis), while the 
R50 can be defined as the weighted median value. This is the rainfall 
erosivity event xk that satisfies next two conditions: 

∑k− 1

i=1
wi < 1/2and

∑n

i=k+1
wi < 1/2 (8)  

where n is sample size (i.e. number of rainfall erosive events per station), 
wi are rainfall erosivity values of ordered sample. Consequently, the D50 
is the position (i.e. rank) of the rainfall erosivity event xk in sorted 
sample of all rainfall erosive events: 

D50 = (xk/n)*100 (9) 

Comparing the station Moor House (UK-1509) with the station 
Overkalix-Svartbyn (SE1390), in the first case (UK-1509) around 97% of 
all events contribute to the 50% of the total erosivity while only 3% of 
the (more extreme rainfall) events contribute to the other half of the 
total erosivity. In the second case (SE-1390), the D50 threshold value is 
around 19%. Thus, the differences among the rainfall erosive events are 
not as large as in the case of the first station. Moreover, this D50 
threshold value is also connected to a specific rainfall erosivity value 
(R50). Thus, the R50 is the actual value of the erosive rainfall event as 
can also be seen from Fig. 1. 

Furthermore, the seasonality of the most extreme events (i.e. events 
larger than R50 threshold) in comparison to seasonality of all rainfall 
erosive events is also investigated with aim to enhance knowledge about 
rainfall erosivity. Thus, mean monthly occurrence (μ50) of the most 
extreme events (larger than R50 threshold) and standard deviation (σ50) 
of these events (given in months) are analyzed in comparison to all 
rainfall erosive events (μALL and σALL). Therefore, next definitions are 
used: 

μ50 =
∑

S50/n50 and μALL =
∑

SALL/n (10)  

σ50 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
(S50 − μ50)

2
/(n50 − 1)

√

and σALL

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
(SALL − μALL)

2
/(n − 1)

√

(11)  

where S50 and SALL are months (i.e. numeric values; Jan-1, Feb-2, etc.) in 
which erosive events occurred for the events larger than the R50 
threshold and all erosive events, respectively. Moreover, n50 is number 
of events above the R50 threshold. Similar concept is frequently used 
when investigating seasonal occurrence of floods where flood dates are 

Fig. 5. Possible distribution of the Lorenz curves for the same value of the Gini coefficient (G). Every colored line indicates data from one station out of 68 presented 
that have a G value equal to 0.6. 

Fig. 6. Relationship between Gini coefficient (G) and Lorenz asymmetry co
efficient (LA) and Shannon entropy (H) for the investigated 1181 stations. The 
values shown in the header are Pearson correlation coefficients and the surface 
is a regression plane for linear regression H ~ G + LA. 
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represented by numeric values (Bezak et al., 2015a; Burn, 1997). For 
example, let’s assume that a station with annual erosivity of 140 MJ mm 
ha− 1h− 1 has 5 rainfall erosive events during a year: 2 events with 10 MJ 
mm ha− 1h− 1 each that occurred in May, 2 events with 25 MJ mm 
ha− 1h− 1 each that occurred in July and October and 1 event with 70 MJ 
mm ha− 1h− 1 that occurred in August. In this hypothetical example, the 
largest event contributes to the 50% of the total erosivity and other four 
events to the other 50%. Therefore, the R50 value as defined in Eq. (8) 
(as weighted median) in this case equals to 25 MJ mm ha− 1h− 1. Addi
tionally, it can be seen that the mean month occurrence of the event 
larger than the R50 (μ50) is August (i.e. 8). While the mean month 
occurrence of all rainfall erosive events is July (μALL equals 7). 
Furthermore, the standard deviation of the occurrence of all rainfall 
erosive events is 2.1 (σALL), while in this example the standard deviation 
of only one event larger than R50 cannot be computed (σ50). The idea 
behind calculating μ50, σ50, μALL and σALL is to investigate seasonal 
characteristics of the most erosive rainfall events (larger than R50) and if 
these are different than characteristics of all rainfall erosive events (i.e. 

including less erosive rainfall events). It should be noted that μ50 and σ50 
should be analyzed simultaneously in order to obtain information about 
the actual seasonal characteristics of the rainfall erosivity. 

3. Results and discussion 

3.1. Erosivity characteristics in Europe through Lorenz curve 
characteristics and Shannon entropy 

Table 3 provides an overview of the derived Lorenz curves and 
calculated Gini coefficient (G), normalized Gini coefficient (G*), Lorenz 
asymmetry coefficient (LA), and Shannon entropy (H) for all 1181 sta
tions included in the REDES database. These coefficients are selected to 
describe the inequality (G and G* and LA as a supplement coefficient to 
the G and G*) and diversity (H) of the rainstorms erosivity in Europe. 
Some descriptive statistics of these metrics for the six K-means clusters 
defined after Ballabio et al. (2017) are reported in Table 4. From the 
information reported in Table 4, one can notice that there is no big 

Fig. 7. Percentage of rainfall erosive events by number that contribute to the 50% of the total erosivity (D50). Rainfall erosivity map of Europe is shown as 
background (Panagos et al., 2015a). 
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differences in reported G, H and LA values among the six K-means 
clusters. The Alpine region, defined by the K-means cluster 6, shows the 
highest erosivity in Europe and a significant difference compared to the 
K-means clusters 5; in terms of seasonality and erosivity values. In this 
regard, it is worth to mention that K-means cluster 6 is also the cluster 
with the lowest number of stations. Highest mean G and H values are 
both observable in K-mean cluster 6, which suggest a large diversity 
(inequality) in the rainstorm erosivity values. A situation represented by 
the presence of a variable set of small and large erosive rainfall events, 
with a large number of relatively small erosive rainfall events (i.e. small 
from the perspective of the Alpine region) according to the mean LA 
value that is smaller than 1 can be seen according to the Table 4. 
Furthermore, stations located in cluster 6 are the ones with the lowest LA 
value in Europe (Tables 3 and 4). 

In Europe, G ranges from 0.4 to 0.78 with a mean value of 0.61 
(Table 3). While no significant differences can be observed between the 
K-means clusters Table 3, some geographical patterns can be detected in 
Fig. 2 reporting the G values computed for each station. Slightly higher 
G values (average value 0.61) are characteristic of the Mediterranean 

region, which is mostly spatially described by K-means clusters 4 and 5 
(i.e. Italy, Greece, Croatia, parts of Spain, Slovenia). Lower G values 
compared to the mean EU (0.61) are found in parts of France, United 
Kingdom and Scandinavia, which are mostly part of the K-means clus
ters 2 and 3 (Fig. 2). These areas have in most cases smaller rainfall 
erosivity compared to the Mediterranean region. Similar to the G values, 
the H value is above the EU average (6.44) in K-means clusters 4, 5 and 6 
(including 1), and below-average in the K-means clusters 2 and 3 (Ta
bles 3 and 4). In case of the LA values, an opposite spatial trend can be 
observed, with values slightly above the EU average calculated for K- 
means clusters 2 and 3 (Tables 3 and 4). The LA values equal or higher 
than 1 are found in around 75% of all stations (Table 3). Conclusively, 
the inequality inferable from the combined analysis of G, H and LA can 
mostly be attributed to a small number of high erosive rainfall events, 
rather than to a large number of low erosive events (e.g., K-means 
cluster 6). Furthermore, it should be noted these low and high erosive 
rainfall events are site-specific, which means that, for example, a low 
erosive rainfall event in the Mediterranean area can be regarded as a 
high erosive rainfall event in northern part of Europe. 

Fig. 8. Events larger than R50 threshold value contribute to the 50% of the total erosivity. Annual rainfall erosivity map is shown as background.  
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Regarding the spatial trend, G tends to slightly decrease with 
increasing latitude (i.e. 0.02 G per 10◦ according to the best-fitted linear 
trend line). By contrast, no evident relationship with longitude is found. 
The same is true for the H that decreases with increasing latitude (i.e. 
0.3H per 10◦ according to the best-fitted linear trend line) (Fig. S1). On 
the other hand, the LA increases with increasing latitude (i.e. 0.03 LA 
per 10◦ according to the best-fitted linear trend line) (Fig. S2). Thus, it 
emerges that in the northern part of Europe there is generally a smaller 
number of highly erosive rainfall events (i.e. LA larger than 1). More
over, here the temporal distribution of erosive events appear more equal 
distributed, as highlighted by the G and H values compared to the 
southern part of Europe (Fig. 2). Although, as already noted the detected 
differences are not highly significant. 

Additionally, the relationship between the calculated G, LA and H 
and annual rainfall erosivity (R) is also investigated (Fig. 3). Thus, it can 
be seen that, as expected, higher G values are associated with higher R- 
factor values. Thus, only few events are contributing to the larger 
percent of erosivity (>90%), which can also be confirmed by the LA 
values shown in Tables 3 and 4. The dependence between G and R is 

stronger when only stations with R values larger than 1000 MJ mm 
ha− 1h− 1 yr− 1 are considered, compared to the case when all stations are 
taken into consideration (Fig. 3). In case of stations with R smaller than 
1000 MJ mm ha− 1h− 1 yr− 1, G values range from ca. 0.4 to 0.8 (Fig. 3). A 
similar relationship can also be seen comparing H and R values (Fig. S3). 
On the other hand, the LA slightly decreases with increasing annual 
rainfall erosivity (0.02 LA per 1000 MJ mm ha− 1h− 1 yr− 1 according to 
the best-fitted linear trend line) (Fig. S4). Additionally, stations with 
smaller R (i.e. less than 1000 MJ mm ha− 1h− 1 yr− 1) can have LA in the 
range between 0.8 and 1.2. It can also be seen that G values are related to 
the erosivity density (Fig. 3) defined as the ratio between R and mean 
annual precipitation (P) (Diodato et al., 2019; Panagos et al., 2016a, 
2015a). Highest values of the erosivity density can be found in the 
Mediterranean area (Italy, Croatia, Slovenia, parts of Spain and Greece) 
(Panagos et al., 2015a). These areas also characterized by larger G 
values. Lower G values are associated with areas with lower erosivity 
density. It should be noted that through the use of G, H and LA one can 
captures the temporal variability in rainfall erosivity. 

Furthermore, Bezak et al. (2021a) proposed atmospheric drivers (e.g. 
thunderstorm days, large-scale precipitation fraction) of rainfall 
erosivity and here we analyse their relationship to G. It can be seen that 
G slightly increases with annual number of thunderstorm days (TD) 
(Enno et al., 2020) and slightly decreases with increasing large-scale 
precipitation fraction (LSPF) (Fig. 4). Similar relationship can also be 
detected among H and two mentioned atmospheric variables, while 
opposite relationship is found for the LA. However, it should be noted 
that correlation in the above mentioned cases is weak. Furthermore, we 
also found an even weaker relationship between G and other tested 
variables such as CAPE and CP (Section 2.1). It clearly emerges that G is 
slightly higher in areas with more frequent thunderstorms (i.e. Medi
terranean area) and slightly lower in areas where large scale frontal 
systems have larger effect in precipitation generation. Moreover, no 
significant relationship is found between the G and the erosivity syn
chrony scale (Rsync) as calculated by Bezak et al. (2021a). 

As already indicated different shapes of the Lorenz curve can be 
characterized by the same or similar G value (Fig. 5). Thus, here we 
present a sample of 68 different stations with very similar values of G (i. 
e. G of 0.6) despite the fact that Lorenz curve for these stations are not 
identical (Fig. 5). Therefore, the LA can provide additional information, 
as it is shown in the above paragraphs. Quite interestingly, there is no 
clear relationship between G and LA (see scattered cloud in Fig. 6). Thus, 
LA values above 1 and values below 1 (i.e. large number of less erosive 
rainfall events) can occur at stations with low or high G (Fig. 6). Only a 
slight decreasing trend for H with increasing G can be observed (R2 =

0.05). The H considers richness (number of rainfall erosive events with 
different erosivity) and evenness (occurrence probability of rainfall 
erosive events with different erosivity) at the same time. H can be 
decreasing due to the former or latter characteristic (low richness or low 
evenness). To understand what is the cause of lower H in case of higher 
G, one should understand that higher G means lower evenness. The H is 
namely at its maximum when all rainfall erosive events with different 
erosivity (potentially high richness) are equally likely (G would be zero). 
The value of H is then only a function of richness. The main cause for 
decreasing H for increasing G is decreasing evenness of rainfall erosive 
events. The increasing G should possibly lower H to a larger extent as 
seen in Fig. 6 and could partially be counter-balanced by a higher 
richness at higher G. 

3.2. Erosivity threshold values and seasonal characteristics 

The results of the two threshold value indicators D50 and R50 used to 
capture the severity of rainfall erosivity across Europe are shown in this 
section (Figs. 7 and 8). D50 expresses the percentage of rainfall erosive 
events that contribute to 50% of the total erosivity. The observed values 
range from 1 to 24%, with a mean value of 11%. It means that on 
average ca. 90% of the rainfall events account only for ca. 50% of the 

Fig. 9. Relationship between the D50, R50 and Gini coefficient (G). The values 
shown in the header are Pearson correlation coefficients and the surface is a 
regression plane for linear regression R50 ~ G + D50. 

Fig. 10. Relationship between the seasonal characteristics of the most erosive 
rainfall events and all rainfall erosive events (μ50, σ50, μALL and σALL). 
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total erosivity (Fig. 7). In extreme cases, ca. 50% of the total erosivity 
can be attributed to only one or two very severe events (i.e. white dots 
shown in Fig. 7). Spatial patterns shown in Fig. 7 are similar to the ones 
shown in Fig. 2. Moreover, González-Hidalgo et al. (2009) showed that 
50% of the eroded soil were produced by 10% of total daily erosive 
events. The R50 is the weighted median value of all erosive events and 
ranges from 19 to 979 MJ mm ha− 1h− 1, with a mean value of 119 MJ 
mm ha− 1h− 1. Additionally, if one looks at the R50 it can be seen that this 
threshold values are more correlated to the R-factor (R2 = 0.45). Thus, 
rainfall erosive events larger than this threshold contribute to the 50% of 
the total annual rainfall erosivity. The largest R50 values in Europe are 
characteristic of areas with the highest rainfall erosivity, e.g., Slovenia 
and Italy. On the other hand, lower R50 values are characteristic of 
Scandinavia and central Europe, which are generally characterized by 
rather lower R values. 

Furthermore, the relationship between the D50 and R50 thresholds 
and the G is analyzed. This can be seen on Fig. 9 showing how the D50 
threshold is well correlated to G (R2 = 0.87) (compare also the results on 

Figs. 7 and 2). This can be regarded as an expected result since D50 
values are calculated based on the Lorenz curve characteristics (Fig. 1). 
The scatter observed on Fig. 9 is related to variability of the LA for a 
fixed G (see Fig. 6). R50 has a lower correlation with the G with a large 
scatter at higher values of G (Fig. 9). In case of R50 and G, the Pearson 
correlation coefficient is a bit lower (R2 = 0.47) compared to the D50-G 
correlation. 

The seasonal characteristics of the most erosive rainfall events are 
investigated by comparing the μ50 and σ50 to μALL and σALL coefficients. 
In case of the seasonal characteristics (i.e. μ50 vs. μALL), it can be 
observed that highest erosive rainfall events (i.e. larger than R50) are 
more shifted towards autumn (Fig. 10). While the mean value of μALL is 
July (i.e. a value of 7), the mean value of μ50 is mid-July (i.e. 7.4) 
(Fig. 10). However, the scatter among stations is larger in case of the 
most erosive rainfall events as compared to all rainfall erosive events 
(Fig. 10). An alternative way to present the map of the differences in the 
mean month occurrence (μALL- μ50) ignoring differences smaller than 
0.8 months. It can be seen that for most stations the highest erosive 

Fig. 11. Difference in the mean month occurrence (μALL- μ50). Mean differences smaller than 0.8 months are not shown. Negative values indicate that that most 
erosive rainfall events (i.e. larger than R50, μ50), on average, occur later in the year than less erosive events (μALL). Positive values indicate opposite situation. 
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rainfall events (μ50) occur later in the year (Fig. 11). This is especially 
evident in case of the Mediterranean area. As indicated by Ballabio et al. 
(2017) the erosivity in this area is very high in the period starting from 
early summer to late autumn. The main mechanism could be higher 
potential for the occurrence of the convective precipitation, which is 
clearly related to the rainfall erosivity (Bezak et al., 2021a). Moreover, 
relatively high number of less-erosive events also occur in spring 
compared to summer (Fernandez-Raga et al., 2017), which could yield 
differences shown in Fig. 11. Additionally, the variability in the occur
rence of all rainfall erosive events and the most extreme ones (σALL and 
σ50) is investigated (Figs. 10 and 12). It can be seen that the variability of 
most erosive rainfall events (σ50) decreases in the direction from south- 
west to north-east (Fig. 12). Thus, in the north-eastern part of EU the 
most erosive rainfall events are the most localized (i.e. smaller standard 
deviation) and are occurring mostly in summer (Ballabio et al., 2017). 
On the other hand, this variability is the largest in the Mediterranean 
area and British Isles (Fig. 12). Furthermore, it can also be seen that the 
range of σ50 is larger than the range of σALL (Fig. 10). It should be noted 
that extreme erosive rainfall events are not the only drivers of the soil 
erosion processes and that other factors such as topography, soil char
acteristics, or vegetation cover also affect soil erosion rates. It should be 
noted that in autumn vegetation phenology is different compared to 
summer and less rainfall is intercepted by vegetation in leafless periods 
(e.g., Zabret et al., 2018) and this has an important effect on the soil 

erosion. A shift of extreme erosive rainfall events with high erosivity 
towards months in a year with less vegetation cover may have large 
implication for high soil erosion rates at such sites. 

3.3. Limitations of the study 

The analysis here presented has a few limitations that need to be 
mentioned. First, it should be noted that due to the mentioned scarcity of 
data, the pluviographic records forming the REDES database cover 
different periods and, in some cases, the length of the records can differ 
substantially. More precisely, a few stations (i.e. less than 3–5%) have 
only about 5 years data available, which in some cases could not be 
enough to adequately capture the entire variability of rainstorm 
erosivity. However, it should be noted that a lot of stations with limited 
amount of data are located in the Mediterranean region and with rela
tively large number of events. For example, there are 5 stations with 3 
years of data but all these stations have more than 60 erosive rainfall 
events in this 3 years (i.e. more than 20 per year). These relatively short 
data periods have some effect on the derived Lorenz curves and derived 
coefficients. A sensitivity investigation using selected stations shows 
that using 50% of the station-data included in the REDES yields differ
ences up to 10–15% in the calculated coefficients. Nevertheless, the 
REDES database is the most complete database at the time being avail
able on ground-measured rainfall amounts from which actual rainfall 

Fig. 12. Standard deviation σ50 is shown. Four different groups of σ50 values are presented while for each group a separate plot is shown in order to identify 
differences among groups. 
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intensity can be computed for a large number of points across Europe. As 
such, it is worth using it to gain insights on large-scale spatiotemporal 
variability of rainfall erosivity. 

4. Conclusions 

This study investigates temporal and seasonal characteristics of the 
rainfall erosive events in Europe using the Lorenz curve and a large set of 
derived indices, i.e. Gini coefficient (G), normalized Gini coefficient 
(G*), Lorenz asymmetry coefficient (LA), Shannon entropy (H) coeffi
cient and D50 and R50 thresholds. More than 300,000 rainfall erosive 
events from 1181 REDES rainfall gauging stations is used in this 
analysis. 

The observed temporal distribution of the rainfall erosive events in 
the Europe has high variability. The G ranges from 0.4 to 0.8, with a 
mean value of 0.61 (SD 0.06). Among the six K-means clusters defined 
for Europe, relatively small differences in the mean G, H and LA values 
are observed. The most distinct differences are observed in the K-means 
cluster that covers the Alpine region, which also shows the highest R 
values. G slightly decreases from south to north of Europe. The same 
relationship is found for H, while opposite spatial trends are noted for 
LA. It is observed that G increases with increasing R, although the 
dependence is not as strong as one would have expected. In Europe, the 
H ranges between 4 and 10 and is only slightly decreasing with 
increasing G and R. Furthermore, G also increases with erosivity density 
and annual number of thunderstorm days (TD), while it slightly de
creases with large-scale precipitation fraction (LSPF). Although it should 
be noted that the G correlation with atmospheric variables is rather 
weak or even very weak. 

The mean value of the D50 threshold in Europe is 11% (ranging from 
1 to 24%), which means that, on average, 11% of all rainfall erosive 
events contribute to the 50% of the total erosivity while around 90% of 
events contribute the other half. The spatial pattern of the D50 is similar 
to the pattern determined by G. Moreover, R50 also varies across Europe 
where the largest values can be detected in the Mediterranean and 
Alpine areas. 

In the majority of the stations, seasonal characteristics the most 
erosive rainfall events (μ50 and σ50) are not the same as seasonal char
acteristics of the entire series of rainfall erosive events (μALL and σALL). 
Thus, the majority of higher rainfall erosive events (i.e. larger than R50) 
is slightly shifted to the autumn (i.e. μ50 > μALL). Differences in the mean 
month occurrence (μALL- μ50) are the largest in the Mediterranean area 
where extreme erosive rainfall events can occur in summer and in 
autumn while in other parts of Europe the extreme erosive rainfall 
events are more localized in the summer. This is also confirmed by the 
variability (σ50) of the most erosive rainfall events that decreases from 
south-west to north-east of Europe (σ50 > σALL). 

The presented results can be regarded as a new important piece in the 
mosaic of spatiotemporal rainfall erosivity variability in Europe. From 
the analysis it clearly emerged that regional temporal rainfall erosivity 
patterns are not homogenous (i.e. relatively large differences among 
neighboring stations can be seen in Fig. 2), thus, as one could expect, 
local climatological conditions determine the local temporal rainfall 
erosivity distribution. Thus, for example, a station located in the Medi
terranean area or in British Isles can have very similar temporal distri
bution of rainfall erosive events while of course the absolute rainfall 
erosivity values can be quite different. This finding can be connected to 
the results presented by Bezak et al. (2021a), who found that rainfall 
erosivity synchrony scale is generally smaller than computed precipi
tation synchrony scale as reported by Berghuijs et al. (2019). Moreover, 
the seasonal investigation reveals that the most erosive events that 
contribute to the 50% of the total erosivity (between 1 and 24% of all 
events, on average 11% of events) generally occur later in the year than 
less erosive events. Thus, the largest erosive events are shifted to the 
autumn or large number of less erosive events occur in spring. Addi
tionally, there are relatively large differences in the seasonal variability 

of these events across Europe. These findings can be regarded as an 
important input for the soil erosion predictions from the perspective of 
the large-scale, process and event-based soil erosion modelling, which 
would allow to make a more dynamic soil erosion assessment. However, 
further studies are needed in order to analyze the relationship between 
the micro-climate drivers (e.g., Bezak et al., 2021a) and weather phe
nomena such as North Atlantic Oscillation (NAO) (e.g., Angulo-Martínez 
and Beguería, 2012; Luković et al., 2015) and rainfall erosivity at large 
spatial scales, which could help with the forecast of the most erosive 
rainfall events that are one of the factors affecting soil erosion rates. 
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N. Bezak and M. Mikoš kindly acknowledge the financial support 
from the Slovenian Research Agency (research core funding No. P2- 
0180). P. Borrelli is funded by the EcoSSSoil Project, Korea Environ
mental Industry & Technology Institute (KEITI), Korea (Grant No. 
2019002820004). The critical and useful comments made by four 
anonymous reviewers and associate editor greatly improved this work. 

Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.catena.2021.105577. 

References 

Almagro, A., Oliveira, P.T.S., Nearing, M.A., Hagemann, S., 2017. Projected climate 
change impacts in rainfall erosivity over Brazil. Sci. Rep. 7 https://doi.org/10.1038/ 
s41598-017-08298-y. 

Angulo-Martínez, M., Beguería, S., 2012. Trends in rainfall erosivity in NE Spain at 
annual, seasonal and daily scales. Hydrol. Earth Syst. Sci. 16, 3551–3559. https:// 
doi.org/10.5194/hess-16-3551-2012. 

Bagarello, V., Di Stefano, C., Ferro, V., Pampalone, V., 2011. Using plot soil loss 
distribution for soil conservation design. Catena 86, 172–177. https://doi.org/ 
10.1016/j.catena.2011.03.009. 

Ballabio, C., Borrelli, P., Spinoni, J., Meusburger, K., Michaelides, S., Beguería, S., 
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