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A B S T R A C T   

Floating objects in rivers and streams present a growing problem, not only as they may cause clogging of bridges 
and other hydraulic structures, and consequently floods, but also because they can have a diverse impact on river 
(and marine) ecosystems, either positive (in case of in-channel wood) or negative (in case of anthropogenic 
floating objects). To automatically identify different types of floating objects (i.e., wood pieces, EPS and XPS 
boards, and plastic and metal containers) and their volumes in an open channel, we propose a novel methodology 
based on non-intrusive measuring methods and machine learning. To this end, we tested the combination of an 
industrial 2D laser scanner, a high-speed camera, and an ultrasonic sensor. In the laboratory experiment, 36 
samples were scanned separately, two to three times in a row, resulting in 77 raw LIDAR clouds and image 
sequences. Raw data were post-processed with custom-developed algorithms to determine the volumes of 
samples above the water surface and their intensity histograms. The latter were analyzed with the machine 
learning algorithm to distinguish between different material types of floating objects. For each of them, the 
material density was assigned. Based on the identified floating object's material type, pre-assigned density, and 
measured volume above the water surface, the sample volumes were calculated and compared with the actual 
ones determined before setting up the experiment. The results show that the proposed approach enables material 
recognition with accuracy higher than 90%. The average volume calculation error based on detected material 
type, assigned densities, and measured floating object's volume above the water surface is approx. 2%. The 
proposed methodology proved promising for automatic differentiation between different types of floating objects 
and remote measurement of their volume. To use the method in real-world applications (e.g., on bridges) for 
forecasting downstream quantities of floating objects, and consequently adjusting their management accord
ingly, additional measurements are needed, focusing on simultaneous scanning of multiple floating objects, 
under different flow conditions.   

1. Introduction 

Floating objects commonly found in rivers and streams consist of in- 
channel wood and anthropogenic floating objects. The latter refer to any 
persistent solid material disposed in the environment by human activ
ities (e.g., plastic bottles and foam take-out containers), while in- 
channel wood results from natural processes. Bigger pieces, such as 
large wood or macro plastics, may induce significant obstructions along 
the river network, clogging hydraulic structures and bridges (e.g., Panici 
et al., 2020), which can damage instream infrastructure and can lead to 
an increase in the upstream water level, inducing floods (Ruiz- 

Villanueva et al., 2016a). Thus, floating objects pose a great challenge to 
flood risk management (Gschnitzer et al., 2017). 

Although in-channel floating objects, especially large wood, have 
been recognized to play an important role in river ecology, morphology, 
and hydraulics, a knowledge of their mobilization, transport, and 
deposition dynamics during high-magnitude flood events still remains 
very scarce, mostly because such events are difficult to monitor in-field 
due to considerable investments in terms of time and costs, but also 
because such activities may be potentially dangerous (Kramer and Wohl, 
2015; Comiti et al., 2016; Ruiz-Villanueva et al., 2016a; Sanhueza et al., 
2019; Wohl et al., 2019). 
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Consequently, different non-intrusive measuring methods (e.g., 
aerial photography and remote sensing) have been increasingly used in 
the past decade, both for measuring flow properties and complex hy
draulic phenomena and for monitoring the dynamics of floating objects 
in rivers. Below, we mention some of the notable examples. 

In terms of hydraulics, image processing techniques like (micro-) 
particle and bubble image velocimetry (e.g., Kantoush et al., 2008; Bung 
and Valero, 2016; Fan et al., 2018), optical flow (e.g., Bung and Valero, 
2016) and computer-aided visualization methods (e.g., Bizjan et al., 
2014; Müller et al., 2015) have been applied to provide 2D and 3D ve
locity fields and detailed shear stress distribution. A combination of a 
high-speed camera and ultrasonic sensors has been used for the deter
mination of dynamic free-water surface levels and for the investigation 
of air-water flows (Zhang et al., 2018). Additionally, laser scanning as a 
firmly established remote sensing technique has proved efficient in the 
acquisition of free-water surface topography of highly aerated flows. 
With its high spatial and temporal resolution, the method was success
fully used to profile time-averaged free-water surface, calculate standard 
deviation, and estimate frequency spectra of free-water surface fluctu
ations of a hydraulic jump, flows on stepped spillways, and turbulent 
supercritical junction flow (Montano and Felder, 2018; Kramer et al., 
2020; Rak et al., 2020a,b). 

In the floating objects monitoring domain, non-intrusive methods 
have mainly been used for the large wood assessment in rivers causing 
wood jams. MacVicar and Piégay (2012) applied a video camera and a 
semi-manual logging algorithm to detect and measure wood passing the 
selected gauging station. Later on, Google Earth® satellite images were 
used for the identification of large wood across greater spatial scales 
(Atha, 2013) and to investigate its spatial distribution and volumes 
(Ulloa et al., 2015). Large wood jams and accumulations were also 
studied by using airborne Light Detection and Ranging (LIDAR) data sets 
(Kasprak et al., 2012; Abalharth et al., 2015; Magnussen et al., 2018), 
and by Structure from Motion (SfM) acquisition (Sanhueza et al., 2019; 
Spreitzer et al., 2019, 2020). Atha and Dietrich (2016) used LIDAR data 
to identify and quantify single logs and log jams in rivers flowing 
through forested catchments. To detect large wood characteristics and 
its volumes in riverine environments, Terrestrial Laser Scanners (TLS) 
have also been applied (Tonon et al., 2014; Grigillo et al., 2015). 
Recently, video monitoring, supported by automatic detection and 
characterization algorithms, has been proposed for wood mobility 
quantification and estimation of the size distribution of floating wood 
logs, which has also been tested in the field (Ghaffarian et al., 2020a, 
2021; Zhang et al., 2021). By applying post-processing and training the 
software algorithms, the method has provided reliable results with an 
error of about 6.5% for wood pieces number estimation and 13.5% for 
volume detection. However, the accuracy of the results depends signif
icantly on the installation (position and inclination) and configuration 
(resolution) of a camera, as well as on the light and flow conditions (i.e., 
light reflection and water waves). 

Although plastic floating objects are considered one of the most 
important global issues, especially along the coasts and in the open seas 
(Hu, 2021), research regarding the identification and transport of macro 
plastics in contributing rivers is limited. 

To automatically differentiate between different floating object types 
commonly found in river channels and remotely measure their volume, 
we propose a combination of non-intrusive measuring methods (i.e., 
industrial 2D laser scanner, high-speed camera, and an ultrasonic sensor 
for free-water-surface measurements) and machine learning. 

Machine learning is a field of artificial intelligence used to find 
complex patterns in data sets, thus allowing in-depth analyses of the 
data. Although originating from computer science, it has been gaining 
attention in other fields (also hydrology and hydraulics) due to its po
tential in discovering more accurate and efficient prediction models 
(Mosavi et al., 2018; Khosravi et al., 2020, 2021). 

To the best of our knowledge, no similar system has been applied for 
monitoring the type, shape, and volume of floating objects in rivers and 

streams. The present work aims to answer the following research 
questions: (a) Can the combination of the 2D laser scanner, high-speed 
camera, and ultrasonic sensor be applied to identify the type and vol
ume of floating objects? (b) What is the precision achieved with this 
approach in obtaining the dimensions (shape and volume) of a single 
floating object? (c) What are the limitations and advantages of this 
approach compared to the other methods for floating objects analysis? 
(d) What are the next steps needed to implement the proposed setup in 
real-world applications? 

The paper is organized as follows. Section 2 gives an overview of the 
experimental setup and the measuring methods applied. The results on 
material recognition and volume estimation of a single floating object 
sample are presented in Section 3. Section 4 introduces a thorough 
discussion on identified material misclassifications and volume errors, 
recommendations for practical application, and comparison with the 
other methods, followed by the conclusions in Section 5. 

2. Materials and methods 

2.1. Floating object samples 

We selected 36 samples of floating objects of different materials, 
densities, shapes, and sizes (Fig. 1). They were divided into three groups: 
a) wood (timber), b) empty plastic and metal packaging, and c) products 
made from the expanded and extruded polystyrene foam (EPS and XPS). 

As for timber samples, 16 cylinders and rectangular cuboids of 
different dimensions made from coniferous wood were tested. Diameters 
of cylindrical samples were in the range between 45 mm and 139 mm, 
while widths and heights of rectangular cuboids were in the ranges from 
44 mm to 160 mm, and 24 mm to 140 mm, respectively. Plastic and 
metal samples presented a selection of packaging products, i.e., bottles, 
containers, and jars of irregular (complex) shapes. They were all empty 
and sealed. EPS and XPS foam samples were rectangular cuboids of 
different dimensions. The width and height of the samples were ranging 
from 65 mm to 220 mm, and 50 mm to 57 mm, respectively, while their 
length varied between 185 mm and 339 mm. 

Actual volumes of regular-shape samples (i.e., cylinders and cuboids) 
were calculated based on their dimensions, while the volumes of more 
complex shapes (i.e., plastic and metal containers) were determined by 
either weighing empty and full samples or measuring their dimensions. 
When assessing the effectiveness of the proposed method, the actual 
volumes were compared with the ones calculated based on the mea
surements and the assigned densities. The volume calculation procedure 
is presented in Section 2.5. 

2.2. Experimental set-up 

Experiments were conducted in a straight rectangular flume, 6 m 
long, 0.5 m wide, and 0.5 m high (Fig. 2). To reduce hydraulic roughness 
and its effect on flow conditions and enable visual inspection of flow and 
floating objects, all walls and the bottom of the channel were con
structed from glass plates with a minimum number of joints. Measure
ments were performed in a subcritical, steady-uniform flow regime. The 
discharge rate was 17 l/s at a water depth of 0.21 m, flow velocity 0.16 
m/s, Reynolds number of 3.3⋅104, and a Froude number of 0.11. Flow 
conditions remained constant during the whole experiment. 

The desired discharge was provided from a constant hydraulic head 
reservoir filled with tap water, through a pipeline equipped with a valve 
and a flow meter, and a vessel with an adjustable height of the opening. 
Water outflow from the model was over the sharp-crested rectangular 
weir. 

The measuring equipment consisted of four main components: a laser 
scanner, a high-speed camera, an ultrasonic water level sensor, and a 
connecting mechanism, to which the scanner and the camera were 
firmly attached (Figs. 2 and 3). The above-mentioned measuring devices 
were mounted on a frame structure equipped with rigid metal rails and 
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were positioned perpendicularly to and 1.2 m above the bottom of the 
channel. 

Each sample was scanned separately, two to three times in a row. 
Samples passed the measuring area at various angles with respect to the 
longitudinal axis of the channel. Thus, each measurement (i.e., case) was 
attributed with orientation - either longitudinal, transverse, oblique or 
rotating. 

Cases including samples with their long axis parallel or perpendic
ular to the longitudinal axis of the channel were attributed longitudinal 
or transverse orientation, respectively. If the sample's orientation devi
ated significantly from the longitudinal and transverse direction, obli
que orientation was assigned. Since water flow in natural rivers is rarely 
uniform across a channel and as unevenly distributed velocities can 
cause whirls, the rotation of samples around the vertical axis was 
applied to analyze its effect on the accuracy of measurement. These 
cases were assigned the rotating orientation. Since sample 34 had a 
circular upper surface and a slightly conical form in the vertical direc
tion, orientation was assigned up when its wider part was above the 
water surface and down when its wider part was immersed. Some 
samples of asymmetrical cross-sections also exhibited transversal tilt. 
However, this effect was not additionally marked. 

2.2.1. Laser scanner 
A commercially available laser scanner equipped with SICK 2D 

LIDAR sensor LMS4121R-13000 was used, which allows for high tem
poral and spatial resolution measurements. According to its technical 
data, the systematic and statistical measurement uncertainties are ±1 
mm and ±1.5 mm, respectively. 

The device operates at the visible red light with a wavelength of 660 
nm, a line scanning frequency of 600 Hz, and an angular resolution of 
0.0833◦. The angular range of the device is 70◦. In total, 504,000 dis
tance measurements were performed per second (i.e., 600 profiles per 
second × 70◦ field of measurement × 12 measurements per single de
gree). Each scan line was composed of 840 measurement points. 

For each emitted laser beam and received echo, reflected from the 
measured surface, the LIDAR sensor records a distance to the surface, 
angle, and remission data (i.e., the intensity of a returned signal, given 
as a value between 0 and 255 or as a percentage of emitted energy). The 
returned signal is always smaller than the emitted one and depends on 
the properties of the measured surface (e.g., on its material and struc
ture), angle of incident, reflections on the surfaces smaller than the laser 
beam footprint (i.e., 1 mm), and energy dissipation of a signal traveling 
through water. 

2.2.2. Ultrasonic sensor 
Previous research has shown that the laser scanner measurements of 

clear, still tap water surfaces are hindered by beam penetration through 
the water and its reflection from the water surface. Since the laser beam 
is specularly reflected off the water surface, the received signal reaches 
the LIDAR sensor only at the null incident angle or very close to 0◦ (Rak 
et al., 2017). As the water surface of the applied subcritical flow is 
relatively smooth and flat, the laser scanner measurements directly 
below the device could provide water levels. However, due to significant 
measurement noise and uncertainty, the water level was acquired using 
the Endress + Hauser's Ultrasonic sensor Prosonic FMU40-ARB2A2 and 

Fig. 1. Samples used in the experiment. The numbers indicate unique labels of individual samples (i.e., sample IDs).  

Fig. 2. Experimental setup: 1 – pipeline system equipped with a valve and a 
flowmeter; 2 – pressure vessel with adjustable height of the opening; 3 – free 
outflow over fixed weir; 4 – channel; 5 – rails with connecting mechanism for 
mounting and precise positioning of measuring devices; 6 – measuring equip
ment; 7 – floating object. 

Fig. 3. Measuring devices, i.e., laser scanner, ultrasonic water level sensor and 
high-speed camera. 
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was controlled by a point gauge. The water level was measured with a 
precision of ±0.1 mm. 

2.2.3. High-speed camera 
Detection of an object's shape and volume using a high-resolution 2D 

laser scanner requires information on its velocity relative to the laser 
sheet. For the velocity field determination, a high-speed Casio EX-F1 
camera with an image acquisition frequency of 300 fps was used. The 
camera was positioned next to the laser scanner and was oriented 
perpendicular to the water surface and the flume bottom (Fig. 3). 

The proposed method requires appropriate illumination and seeding. 
As the object's velocity is roughly related to water velocity (Ghaffarian 
et al., 2020b), the samples served as tracers. Thus, no additional seeding 
was needed. As illumination, ordinary daylight was used. Image se
quences were obtained for all the measurements, i.e., 77 passes of 
various floating samples were recorded. 

2.3. Data post-processing 

Each scan line resulted in a row of 840 measured distances with 
corresponding intensity values. Obtained raw (textual) data were 
transmitted to the computer through a custom-made user interface 
written in Python and performed using the Ethernet connection. 

The distance data obtained during each experiment is static and can 
be treated as point cloud data. The point cloud obtained from the 
measurements refers to the coordinate system presented in Fig. 4. Co
ordinate system origin is translated vertically from the scanner center to 
the water surface level. Z-axis is pointing upwards, Y-axis along the 
water flow, and X-axis transversely perpendicular to axes Y and Z. 

The processing of distance data into a point cloud starts by decom
posing each scan line of distances into vertical and horizontal compo
nents according to the vertical angle of a laser beam. Angular values in 
the scan line span from 55◦ to 125◦ with respect to the horizon, with a 
step of 5′ (i.e., 5/60◦). The horizontal component of the distance is 
referred to as the X coordinate and the vertical component as the Z co
ordinate. Values of the Y coordinate depend on the velocity of a floating 
object and water flow. Given the frequency of laser scanner measure
ments and water flow velocity, all points in a scan line are assigned the 
same value of Y coordinate according to the consecutive number of a 
scan line. 

The points falling outside the channel are removed by thresholding X 
coordinate values. The ones reflected from a calm water surface are 
highly dispersed (except at incidence angles close to 0◦, where the total 
internal reflection appears; Rak et al., 2017). However, they can be 

efficiently removed by further filtration. 
For fine-tuning, the pcdenoise function integrated into Matlab™ was 

used, which exploits the nearest neighbor filtering method, i.e., all 
points lacking a sufficient number of neighbors in a given neighborhood 
are removed from the cloud. At first, 100 neighbors inside a smaller area 
were required, followed by 20 neighbors inside a five times larger area. 
All the outliers have to be removed as they can severely affect the final 
results. 

Next, a regular square grid (mesh) was built over the remaining 
points of the point cloud. To this end, a griddata interpolation function 
integrated into Matlab™ was applied, using linear interpolation to 
determine the values in a regular grid according to the position of points 
in the point cloud. A cell size of 5 mm was selected. 

Based on regular square grid data, the volume of the floating sample 
part above the water surface was calculated by multiplying each cell 
height by the area of the cell (i.e., 5 × 5 mm = 25 mm2) and by summing 
all partial (cell) volumes. 

For image sequences post-processing obtained by a high-speed 
camera, the computer-aided visualization method was applied based 
on the advection-diffusion equation, integrated into the ADMflow soft
ware, developed by the University of Ljubljana, Faculty of Mechanical 
Engineering, and by the Abelium company (Bajcar et al., 2009). The 
ADMflow has been successfully used for measuring the velocity fields of 
free surface flows under various conditions (Müller et al., 2015; Novak 
et al., 2017). 

2.4. Material recognition based on machine learning 

Besides the measured distances, the laser scanner also records in
tensities of reflected laser beams which can be plotted as histograms. We 
decided to investigate these histograms and see whether we could 
identify patterns that would point to a particular material, thus allowing 
the automatic detection of a floating object material. 

Histograms obtained for each case were vectorized, i.e., to each in
tensity interval (from 0–10 to 140–150), a percentage of recorded re
flections was assigned. The resulting 77 vectors were analyzed with one 
of the most popular algorithms for pattern recognition, i.e., the IBk 
classifier incorporated into WEKA software (Aha et al., 1991). 

IBk or a k-nearest neighbor algorithm is a non-parametric classifi
cation method. Its input consists of the k closest training examples in the 
data set for which the correct classification is known, while its output is 
a class membership. An object is assigned to the class most common 
among its k-nearest neighbors, where k is a positive (typically small) 
integer. If k = 1, then the object is assigned to the class of a single nearest 
neighbor (see Fig. 5). 

The classification quality can be assessed through the 10-fold cross- 

Fig. 4. Orientation of the point cloud coordinate system in the experi
mental setup. 

k = 1

k = 3

k = 5

Fig. 5. A hypothetical example of IBk classification. The test sample (circle) 
can be classified as a square or triangle. If k = 1 or k = 5, it is assigned to 
squares, and if k = 3 to triangles. 
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validation. To this end, the whole dataset is divided into ten subsets. 
Nine subsets are used for training and one for testing. The same pro
cedure is repeated ten times, each time with a different sub-set used for 
testing. The accuracy of each evaluation is computed based on 
comparing the actual vs. predicted class value. In our case, the class 
value represents the floating object material type. The final accuracy is 
the average accuracy of all ten evaluations. 

2.5. Calculation of the sample volume 

As the laser scanner can only detect a part of the floating sample 
above the water surface, a relationship between the measured volume 
above the water surface (Vabove) and the entire sample volume (V) is 
needed. It can be derived from Archimedes' principle, which states that 
any object, wholly or partially immersed in a fluid, is buoyed up by force 
equal to the weight of the fluid displaced by the object (wfl). Thus, 
buoyancy force (FB) can be written as: 

FB = wfl = mfl⋅g = ρfl⋅Vfl⋅g = ρfl⋅Vsub⋅g (1)  

where mfl is the mass of the displaced fluid, g is gravitational accelera
tion, ρfl is the density of the displaced fluid, and Vfl is its volume, which is 
equal to the submerged volume of an object (Vsub). The weight force of 
an object (Fg) is termed as: 

Fg = m⋅g = ρ⋅V⋅g (2)  

where m, ρ, and V are the mass, density, and volume of the object, 
respectively. For an object to float, the Fg must be balanced with the FB: 

FB = Fg→ρfl⋅Vsub⋅g = ρ⋅V⋅g (3) 

Based on Eq. (3), the quantitative expression for the fraction sub
merged can be derived: 

Vsub

V
=

ρ
ρfl

(4) 

By replacing Vsub with V - Vabove and ρfl with ρH2O (which stands for 
water density), we get the following equation: 

V − Vabove

V
=

ρ
ρH2O

→V =
Vabove⋅ρH2O

ρH2O − ρ (5) 

Now, we can express the object (floating sample) volume as: 

V =
Vabove⋅ρH2O

ρH2O − ρ (6) 

We can see that the floating object volume estimation also depends 
on its density, which is material-dependent. Although the tested sam
ples' densities could be calculated according to the actual dimensions 
and weights, they were assigned based on detected material type to lay 
the foundation for real-world applications in which the densities are not 
provided and have to be somehow estimated. For samples classified as 
wood, we selected a density value of 580 kg/m3, which falls within the 
range of 660 ± 200 kg/m3 for instream wood provided by Ruiz-Villa
nueva et al. (2016b), considering broad-leaved trees species mostly 
which have higher densities than coniferous wood used in our experi
ment. Our samples were made of relatively fresh wood and were not 
completely soaked. For EPS and XPS samples, densities were assigned 
according to the average material specification provided by different 
manufacturers of EPS and XPS insulation boards, i.e., 10 kg/m3 and 30 
kg/m3, respectively. In real-world applications, it is not possible to 
identify whether a floating packaging object (either metal or plastic) is 
empty or at least partially full. The only fact is that a filled packaging 
sample would not float on the water surface. Assuming that the most 
waste packaging is (almost) empty and that the type/volume of its 
content cannot be defined, the average densities of tested empty bottles, 
containers, and jars of irregular (complex) shapes were used, separately 

for metal and plastic products. Thus, the density value of 55 kg/m3 was 
assigned to samples classified as plastic and 170 kg/m3 to samples 
classified as metal. 

3. Results 

3.1. Material recognition 

For each of the 77 scanning cases, the histograms of the recorded 
intensities were obtained. First, the histograms were grouped according 
to the actual material type of the tested samples. The results are pre
sented in Fig. 6, where the darker shade of grey tells us where the his
tograms overlap, thus indicating the most predominant shape of the 
histogram for a particular material type. Results show that the histo
grams of wooden samples can vary significantly, while the ones of EPS 
and XPS are more consistent. Plastic and metal samples have a similar 
intensity response, i.e., their histograms are of similar shapes. 

Due to the large dispersion of histograms for wood samples, we 
decided to additionally divide them according to their shape, i.e., cyl
inder, cuboid, and cuboid-board. The results, presented in Fig. 7, indi
cate that the floating object's shape affects the intensity footprints. 

Next, the obtained histograms were vectorized and analyzed with the 
WEKA software, namely with the IBk classifier, to see whether it is 
possible to automatically detect different floating object material types. 
According to the results, presented in Appendix A, the material type was 
correctly attributed to 70 (90.9%) samples. Only 7 (9.1%) samples were 
incorrectly classified, i.e., one wooden sample was incorrectly classified 
as EPS, two plastic samples as metal and one as XPS, one metal sample as 
wood and one as plastic, and one XPS sample as plastic. 

3.2. Floating objects' volume calculation 

By post-processing, the point clouds obtained with laser scanning 
(see an example in Fig. 8), we calculated the volumes of the floating 
samples above the water surface. Results are presented in Table 1, in the 
Vabove column. 

Based on the detected material type, the densities presented in Sec
tion 2.5 were assigned to each sample. Using Eq. (6) and considering 
measured volume above the water surface (Vabove) and the assigned 
densities, the sample volume could be calculated. The calculation results 
are presented in Table 1, in column Vcal. 

Additionally, Vcal was compared with the actual (pre-determined) 
volume (Vact). Volume errors, expressed as a difference between the 
actual and the calculated sample volumes are also given in Table 1, both 
in liters and %. 

Further on, we analyzed the impact of floating objects' material type, 
shape, and orientation on estimated volume errors (in %). Please note 
that for this analysis, plastic bottles were assigned a cylinder shape. The 
results are presented in Fig. 9. The median error value for all floating 
samples is 2.04%, while 50% of cases fall within the range of − 7.82 to 
9.50%. Regarding the material type results, the maximum dispersion of 
errors is observed in the case of wooden samples, and the minimum in 
the case of XPS samples, which probably has to do with the number of 
cases falling under each category (35 cases were classified as wood and 
only six as XPS). Also, for the samples made of metal, the proposed 
method exerts a tendency towards volume overestimation (the median 
error value is 11.34%). The reason may lie in two plastic samples being 
incorrectly classified as metal, thus hindering the volume calculation 
results. Sample orientation has no significant impact on estimated er
rors, at least when looking at the median values of the error. Regarding 
shapes, the maximum dispersion of errors is observed in the case of 
cylindrical shapes. Again, this may be since most of the samples were 
cylindrical (as already mentioned, bottles were also assigned a cylin
drical shape). 

As the range of errors was the largest when considering samples 
made of wood, we decided to perform additional analysis on wood 
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Fig. 6. Intensity footprints for the samples made of different materials.  

Fig. 7. Intensity footprints for different shapes of wood.  

Fig. 8. Filtered point cloud (left) and a mesh (right) for case 15.  
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Table 1 
Volume calculation results.  

Case 
ID 

Sample 
ID 

Material 
(actual) 

Material 
(detected) 

Shape Orientation Vact [l] Vabove 

[l] 
Density [g/ 
l] 

Vcal [l] Error 
[l] 

Error 
[%]  

1  1 Wood Wood Cylinder Transverse  2.66  0.96  580  2.29  − 0.37  − 14.04  
2  1 Wood Wood Cylinder Oblique  2.66  0.9  580  2.14  − 0.52  − 19.41  
3  1 Wood Wood Cylinder Longitudinal  2.66  0.89  580  2.12  − 0.54  − 20.31  
4  2 Wood Wood Cylinder Longitudinal  1.91  0.74  580  1.76  − 0.15  − 7.82  
5  2 Wood Wood Cylinder Transverse  1.91  0.85  580  2.02  0.11  5.88  
6  3 Wood Wood Cylinder Longitudinal  0.61  0.21  580  0.50  − 0.11  − 17.79  
7  3 Wood Wood Cylinder Rotating  0.61  0.23  580  0.55  − 0.06  − 9.96  
8  4 Wood Wood Cylinder Rotating  0.82  0.3  580  0.71  − 0.10  − 12.59  
9  4 Wood Wood Cylinder Longitudinal  0.82  0.28  580  0.67  − 0.15  − 18.41  
10  4 Wood Wood Cylinder Transverse  0.82  0.31  580  0.74  − 0.08  − 9.67  
11  5 Wood Wood Cylinder Longitudinal  5.98  2.89  580  6.88  0.90  15.01  
12  5 Wood Wood Cylinder Transverse  5.98  2.76  580  6.57  0.59  9.84  
13  6 Wood Wood Cuboid Longitudinal  8.96  4.84  580  11.52  2.56  28.61  
14  6 Wood Wood Cuboid Transverse  8.96  4.42  580  10.52  1.56  17.45  
15  6 Wood Wood Cuboid Transverse  8.96  4.01  580  9.55  0.59  6.56  
16  6 Wood Wood Cuboid Rotating  8.96  4.72  580  11.24  2.28  25.43  
17  7 Wood Wood Cuboid Longitudinal  3.65  1.65  580  3.93  0.28  7.69  
18  7 Wood Wood Cuboid Transverse  3.65  1.49  580  3.55  − 0.10  − 2.75  
19  8 Wood Wood Cuboid - board Longitudinal  1.31  0.56  580  1.33  0.03  2.12  
20  8 Wood Wood Cuboid - board Transverse  1.31  0.56  580  1.33  0.03  2.12  
21  9 Wood Wood Cuboid - board Longitudinal  1.94  0.72  580  1.71  − 0.23  − 11.85  
22  9 Wood Wood Cuboid - board Transverse  1.94  0.7  580  1.67  − 0.28  − 14.30  
23  10 Wood Wood Cuboid Rotating  1.17  0.5  580  1.19  0.02  2.06  
24  10 Wood Wood Cuboid Transverse  1.17  0.46  580  1.10  − 0.07  − 6.10  
25  11 Wood Wood Cuboid Longitudinal  0.90  0.39  580  0.93  0.03  2.90  
26  11 Wood Wood Cuboid Transverse  0.90  0.31  580  0.74  − 0.16  − 18.21  
27  12 Wood Wood Cuboid Longitudinal  2.56  1.09  580  2.60  0.04  1.38  
28  12 Wood Wood Cuboid Transverse  2.56  1.05  580  2.50  − 0.06  − 2.34  
29  13 Wood Wood Cuboid - board Longitudinal  0.60  0.27  580  0.64  0.04  7.43  
30  13 Wood Wood Cuboid - board Transverse  0.60  0.27  580  0.64  0.04  7.43  
31  14 Wood Wood Cuboid - board Longitudinal  1.22  0.55  580  1.31  0.09  6.99  
32  14 Wood Wood Cuboid - board Transverse  1.22  0.54  580  1.29  0.06  5.04  
33  15 Wood Wood Cuboid - board Longitudinal  0.67  0.34  580  0.81  0.14  21.48  
34  15 Wood Wood Cuboid - board Transverse  0.67  0.32  580  0.76  0.10  14.33  
35  16 Wood EPS Cuboid - board Longitudinal  1.93  0.92  10  0.93  − 1.00  − 51.78  
36  16 Wood Wood Cuboid - board Transverse  1.93  1.09  580  2.60  0.67  34.66  
37  17 XPS XPS Cuboid - board Longitudinal  1.10  1.16  30  1.20  0.10  8.86  
38  17 XPS XPS Cuboid - board Transverse  1.10  1.13  30  1.16  0.07  6.05  
39  18 XPS XPS Cuboid - board Longitudinal  1.94  2.06  30  2.12  0.19  9.58  
40  18 XPS XPS Cuboid - board Transverse  1.94  2.07  30  2.13  0.20  10.11  
41  19 XPS XPS Cuboid - board Longitudinal  1.71  1.65  30  1.70  − 0.01  − 0.59  
42  19 XPS Plastic Cuboid - board Rotating  1.71  1.65  55  1.75  0.03  2.04  
43  20 EPS EPS Cuboid - board Longitudinal  1.41  1.27  10  1.28  − 0.13  − 9.02  
44  20 EPS EPS Cuboid - board Transverse  1.41  1.53  10  1.55  0.14  9.61  
45  21 EPS EPS Cuboid - board Rotating  1.08  1.25  10  1.26  0.19  17.38  
46  21 EPS EPS Cuboid - board Transverse  1.08  1.08  10  1.09  0.02  1.42  
47  22 EPS EPS Cuboid - board Rotating  2.56  2.41  10  2.43  − 0.13  − 4.93  
48  22 EPS EPS Cuboid - board Transverse  2.56  2.13  10  2.15  − 0.41  − 15.98  
49  23 EPS EPS Cuboid - board Longitudinal  3.61  3.39  10  3.42  − 0.18  − 5.08  
50  23 EPS EPS Cuboid - board Rotating  3.61  3.77  10  3.81  0.20  5.56  
51  33 Plastic Plastic Container Longitudinal  0.86  0.78  55  0.83  − 0.04  − 4.26  
52  33 Plastic Plastic Container Oblique  0.86  0.7  55  0.74  − 0.12  − 14.08  
53  33 Plastic Metal Container Rotating  0.86  0.99  170  1.19  0.33  38.36  
54  28 Metal Metal Can with lid Rotating  0.28  0.22  170  0.27  − 0.02  − 6.57  
55  28 Metal Metal Can with lid Longitudinal  0.28  0.22  170  0.27  − 0.02  − 6.57  
56  29 Metal Wood Bottle 0.5 l Oblique  0.59  0.48  580  1.14  0.55  93.70  
57  29 Metal Metal Bottle 0.5 l Longitudinal  0.53  0.48  170  0.58  0.05  8.78  
58  27 Plastic Plastic Wrinkled bottle Rotating  1.80  1.67  55  1.77  − 0.03  − 1.60  
59  27 Plastic Plastic Wrinkled bottle Oblique  1.80  1.59  55  1.68  − 0.11  − 6.32  
60  30 Metal Metal Bottle 1 l Longitudinal  1.17  1.12  170  1.35  0.18  14.91  
61  30 Metal Plastic Bottle 1 l Transverse  1.17  1.01  55  1.07  − 0.11  − 8.98  
62  36 Plastic Plastic Bottle with 

dispenser 
Rotating  0.55  0.56  55  0.59  0.05  8.69  

63  36 Plastic Plastic Bottle with 
dispenser 

Transverse  0.55  0.57  55  0.60  0.06  10.63  

64  25 Plastic Plastic Bottle Longitudinal  1.15  1.12  55  1.19  0.04  3.42  
65  25 Plastic Plastic Bottle Transverse  1.15  1.02  55  1.08  − 0.07  − 5.81  
66  24 Plastic Plastic Bottle with 

dispenser 
Longitudinal  1.15  1.06  55  1.12  − 0.02  − 2.12  

67  24 Plastic Plastic Bottle with 
dispenser 

Transverse  1.15  1.24  55  1.31  0.17  14.50  

68  26 Plastic Plastic Container Longitudinal  1.34  0.93  55  0.98  − 0.36  − 26.72  
69  26 Plastic Plastic Container Transverse  1.34  1.27  55  1.34  0.00  0.07 

(continued on next page) 
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Table 1 (continued ) 

Case 
ID 

Sample 
ID 

Material 
(actual) 

Material 
(detected) 

Shape Orientation Vact [l] Vabove 

[l] 
Density [g/ 
l] 

Vcal [l] Error 
[l] 

Error 
[%]  

70  32 Plastic Plastic Bottle 0.33 l Longitudinal  0.35  0.36  55  0.38  0.03  7.47  
71  32 Plastic Plastic Bottle 0.33 l Oblique  0.35  0.34  55  0.36  0.01  1.50  
72  31 Metal Metal Bottle 1 l Rotating  1.17  1.11  170  1.34  0.16  13.89  
73  31 Metal Metal Bottle 1 l Transverse  1.17  0.99  170  1.19  0.02  1.58  
74  35 Plastic Plastic Bottle 10 l Longitudinal  12.29  8.22  55  8.70  − 3.59  − 29.24  
75  35 Plastic Plastic Bottle 10 l Transverse  12.29  12.72  55  13.46  1.17  9.50  
76  34 Plastic XPS Cup with lid Down  0.65  0.51  30  0.53  − 0.12  − 19.11  
77  34 Plastic Metal Cup with lid Up  0.65  0.68  170  0.82  0.17  26.04  

Fig. 9. Impact of material type, orientation and shape on volume errors.  

Fig. 10. Wood samples: impact of shape and orientation on volume errors.  
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samples only. These results are presented in Fig. 10. The median error 
value for all wood samples is 2.12%, while 50% of cases fall within the 
range of − 10.44 to 8.23%. The volumes of rotating and cylinder-shaped 
samples are slightly underestimated compared to the floating objects of 
other orientations and shapes. 

4. Discussion 

4.1. Material misclassification and volume errors 

Volume errors are mostly related to material misclassification. For 
example, in case 56, the floating sample made of metal was classified as 
wood. Thus, it was assigned a higher density (580 g/l instead of 170 g/l). 
Consequently, the calculated volume was significantly overestimated (i. 
e., by 93.7%). 

Most of the misclassifications (i.e., cases 35, 42, 56, and 61) are hard 
to interpret. The histograms of the misclassified cases must have been 
similar to ones typical for other materials. For example, the histogram 
for case 53 (rotating sample 33, i.e., plastic container coated with a thin 
layer of glossy black foil) must have been similar to the histograms of 
metal samples, which could be due to its smooth covering. Also, cases 76 
and 77, corresponding to sample 34 (i.e., the only plastic container 
facing the scanner with its flat surface) were not correctly classified. As 
this container was very different from the other plastic samples, the 
machine learning algorithm could not differentiate it successfully. To 
improve the classification, more various samples would be needed so 
that the algorithm could learn from them. 

In general, histograms for different material types look different 
because of the remission, i.e., the ability of a material to reflect light. 
According to Lambert-Beer law, the remission value of an object corre
lates with the ratio of the laser light amount emitted by the LIDAR sensor 
falling on the object and the amount reflected by the object. Thus, the 
reflection intensities are affected by the material type and shape, namely 
by the incident of a laser beam. Shiny surfaces tend to have different 
remission values at different angles of incidence, while matt and dull 
surfaces have a diffuse remission and, consequently, similar relative 
remission values independent of the incidence angle (SICK, 2020). 

The main focus of our research was on the automatic identification of 
the floating object's material type to enable the correct assignment of its 
density. Since only one wooden object case (i.e., case 35) was incorrectly 
classified as the EPS, we believe this task was successful, regardless of 
the identified shape impact, seen in Fig. 7. 

Additionally, two scanning problems were identified that might 
cause volume errors. The first one is related to scanning shadows. In 
some cases, the orientation of the floating object may prevent the laser 
scanner from scanning its entire above-water surface, i.e., it may be 
casting a shadow. Examples of scanning shadows are presented in 
Fig. 11. In such cases, only a visible part of the object is scanned. The 
volume is computed for the vertical projection of the visible surface, as 
explained in Section 2.3. 

The second one is related to the rotation of the floating objects. While 
rotating, one part of the object flows faster than the other related to the 
scanner. That is why the average velocity of a sample perpendicular to 
the scanning sheet determined with post-processing of image sequences 
can be underestimated. Thus, the faster side of the object is detected as 
shorter and the slower as longer (Fig. 12), which may cause errors in 
volume calculation. 

However, the results, presented in Fig. 9, show that the average 
volume errors of rotating objects do not differ from the errors obtained 
for the non-rotating samples, while the volumes of rotating wood objects 
are only slightly underestimated compared to other orientations 
(Fig. 10). 

Reynolds number and free-surface water velocity (i.e., 3.3⋅104 and 
0.16 m/s, respectively) used within the presented research are compa
rable with the values for the middle and lower river courses but lower 
than the values for the upper natural river courses or during high water 

events. However, due to the high sampling rate of the fast camera and 
LIDAR, higher water flow velocities should not affect the data acquisi
tion capability. More than a flow regime, an undulated or rough free- 
water surface could cause tossing and consequently misinterpretation 
of a floating object and false estimation of its immersed part when 
crossing the measuring section, which could also lead to incorrect 
assessment of the volumes of floating objects. 

4.2. Recommendations for practical application 

Testing laser scanner for water level acquisition in case of relatively 
smooth water surface revealed relatively high measurement uncertainty 
(up to 10 cm), significant noise, and poor usability in cases of clear water 
(Rak et al., 2017). While such an error might be acceptable in real-world 
applications, it is unacceptable in laboratory experiments. That is why 
we used the ultrasonic sensor for water level detection. However, for the 
practical application, the ultrasonic sensor could be removed since 
water is rarely entirely clear and as it contains suspended particles from 
which the laser beam could be reflected, but also because the mea
surement uncertainty is less significant for the field measurements. Still, 
one camera would be needed to determine the velocity of objects 

Fig. 11. Scanning shadows.  

Fig. 12. Point cloud of a rotating sample (case 45, sample 21).  
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relative to the laser sheet to transform raw LIDAR point cloud along the 
axis perpendicular to the laser sheet and, consequently, estimate the 
shape and volume of objects above the water surface. 

The width part of the channel covered with one laser scanner de
pends on its installation height. In general, laser scanners' field of view 
ranges from 70◦ to 270◦ with different angular resolutions. However, 
increasing the incidence angle on the water surface can result in scan
ning shadows presented in Fig. 11. These could be eliminated by using 
two overlapping LIDAR sensors. In the case of wider rivers, more laser 
scanners would be needed. As such laser scanners are widely used for 
continuous measurements in industry, they have low energy 
consumption. 

In real-world applications, the densities of the floating objects are not 
provided and have to be somehow estimated. In the proposed method, 
material recognition based on laser scanning measurements and ma
chine learning is used for this purpose. For the identified wood objects, 
density estimations could rely on the most common (dominant) wood 
species in the contributing catchment and recommendations from the 
literature. For example, Ruiz-Villanueva et al. (2016b) provide a range 
of 660 ± 200 kg/m3 for in-channel wood belonging to broad-leaved tree 
species. Additionally, the densities could be adapted to particular flood 
conditions, e.g., average flood events might result in mostly fresh in- 
channel wood, while during more intense flood events, in-channel 
wood could also consist of drier (older) wood already exhibiting signs 
of decay. For the EPS and XPS samples, the average values provided by 
the manufacturers could be used, i.e., 10 kg/m3 and 30 kg/m3, 
respectively. 

Recent studies on riverine plastic pollution (van Emmerik and 
Schwarz, 2020; Al-Zawaidah et al., 2021) have revealed its diverse 
range of sizes (i.e., nano-, micro-, and macroplastics), forms (i.e., fibers, 
films, and solid pieces), and densities (e.g., from 910 to 2300 kg/m3 for 
plastic polymers). Since we only tested empty plastic objects, the density 
values of raw material could not be applied directly. Namely, an empty 
volume or volume filled with unknown content can affect the density of 
a floating object even more than the plastic object's type. Therefore, the 
assignment of densities to the identified plastic and metal objects re
mains problematic, as, in the real world, it is not possible to determine 
whether a floating packaging object (either metal or plastic) is empty or 
full. However, assuming that most waste packaging is (almost) empty, 
the average densities obtained in the laboratory (based on testing 
various types of containers) should be attributed separately for plastic 
and metal products, for which the proposed values are 55 kg/m3 and 
170 kg/m3, respectively. However, these values might change after 
examining more packaging samples, which is foreseen in the future. 

4.3. Comparison with the other methods 

Stereo-vision acquisition of floating objects might outperform the 
proposed method in the case of rotating objects as camera shots are 
executed in a moment. While using LIDAR, one part of the rotating 
object flows faster than the other related to the scanner. Thus, the ve
locity of a sample perpendicular to the scanning sheet determined with 
post-processing of image sequences could be underestimated. Conse
quently, the faster side of the object is detected as shorter and the slower 
as longer, which may cause errors in volume calculation. Anyway, the 
results show that the volumes of rotating samples are just slightly 
underestimated compared to the measurements of the same, non- 
rotating objects. 

Compared to the proposed approach, stereo-vision and SfM are more 
sensitive to water surface topography and turbulence. Another notable 
advantage of our method is that it needs very little light, only to detect 
particles on the water surface, based on which water velocity may be 
determined, while it is not required for objects' detection by the LIDAR 
sensor. Thus, it could also be used during the night, without any addi
tional light source (the street lights on the bridges would probably suf
fice). Also, the proposed method allows for a very detailed estimation of 

the volume above the water surface using a single static scanner, while 
the application of stereo-vision requires at least two cameras. On the 
other hand, SfM could be applied using a single camera but requires 
changing its position and orientation. So far, the SfM has been used for 
the volume estimation of the static piles of in-channel wood. Thus, the 
question is how it would perform in the case of moving objects. 

5. Conclusions 

The paper presents a non-intrusive measuring method for the 
acquisition of floating objects in an open channel. The proposed meth
odology was tested in the straight rectangular flume. Results of the 
research show that laser scanning in combination with a high-speed 
camera and ultrasonic sensor can provide raw data, which enables 
further post-processing and qualitative, as well as quantitative analysis 
of the floating elements. Due to the laser beam reflections from the water 
surface, laser scanning can only detect a part of the floating object above 
the water surface. Thus, to calculate its entire volume, the appropriate 
material-dependent density has to be assigned. To this end, the histo
gram analysis of the laser beam intensities reflected from the sample's 
surface was performed using the IBk machine learning algorithm, which 
revealed that different types of material have distinct fingerprints. 

Based on the automatic material type identification and the assigned 
density, the floating sample volume could be calculated and compared 
with the pre-determined (actual) one. The results reveal that the volume 
error is approximately 2% on average. Mostly, it is affected by material 
type identification, and to a lesser extent, by sample orientation and 
shape. 

The presented method proved fast, reliable, and relatively robust. It 
requires already installed measuring equipment at river monitoring 
gauges with a few additional, not very expensive, and operationally 
undemanding devices. Besides the advantages, the method limitations 
are presented concerning the material type misclassifications, scanning 
shadows, and problems encountered while scanning the rotating 
samples. 

At this first stage of the experiment, we have only conducted mea
surements with individual samples under controlled laboratory condi
tions. Since we are introducing a new method for the acquisition of in- 
channel wood and other floating objects of various material types, our 
goal was to investigate the applicability of the proposed method and its 
capability of object identification, material recognition, and volume 
estimation. 

Next, we will perform laboratory measurements using multiple ob
jects, either of the same or different materials. We expect that in the case 
of samples having no contact when passing the laser scanner, the pro
posed approach should give equally reliable results as presented in this 
research, even if the objects are made of different materials. On the other 
hand, clusters of samples of different characteristics could affect mate
rial recognition and, consequently, the process of assigning the densities 
and misestimation of objects' volumes. 

After solving all the potential issues arising during laboratory mea
surements, we would like to test the proposed approach in a real-world 
application. 

In natural rivers and streams, especially in their upper/torrential 
parts, in-channel wood is usually the prevailing floating object type 
affecting ecological processes, causing obstruction problems, and 
increasing flood hazard potential. Thus, further work will focus on 
testing the proposed methodology on wood logs of different tree species. 
Additionally, more plastic and metal samples of various shapes will be 
tested to improve the material recognition process. 
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Appendix A. 10-Fold cross-validation results (IBk, k ¼ 1) 

Summary  

Correctly classified instances 70 (90.9091%) 
Incorrectly classified instances 7 (9.0909%) 
Kappa statistic 0.8691 
Mean absolute error 0.0555 
Root mean squared error 0.1861 
Relative absolute error 19.7631% 
Root relative squared error 49.874% 
Total number of instances 77  

Detailed accuracy by class   

TP rate FP rate Precision Recall F-measure MCC ROC area PRC area Class   

0.972  0.024  0.972  0.972  0.972  0.948  0.981  0.968 Wood   
0.842  0.034  0.889  0.842  0.865  0.823  0.921  0.786 Plastic   
0.750  0.029  0.750  0.750  0.750  0.721  0.899  0.659 Metal   
0.833  0.014  0.833  0.833  0.833  0.819  0.851  0.763 XPS   
1.000  0.014  0.889  1.000  0.941  0.936  0.994  0.903 EPS 

Weighted avg.  0.909  0.026  0.909  0.909  0.909  0.882  0.949  0.868   

Confusion matrix  

a b c d e ← classified as  

35  0  0  0  1 a = wood  
0  16  2  1  0 b = plastic  
1  1  6  0  0 c = metal  
0  1  0  5  0 d = XPS  
0  0  0  0  8 e = EPS  
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