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Modeling fracture in elasto-plastic solids by embedded-discontinuity
stress-hybrid finite element formulation
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ABSTRACT
The Hellinger-Reissner principle is applied to derive a hybrid-mixed quadrilateral finite element
with embedded-discontinuity in displacements, which can model a discrete crack (interface) within
the element, and its sliding (and opening). The chosen material models are elasto-plasticity with
hardening for the bulk, and traction-separation plasticity with softening for the interface. The latter
model describes localized material failure and relates cohesion degradation with the fracture
energy. The fulfillment of the inelastic relations at the bulk’s integration points is performed by a
stress-driven update algorithm. The stress and embedded-discontinuity kinematic parameters are
condensed on the element level, allowing for an efficient implementation.
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1. Introduction

Structural limit states often go along with one or more zones
with cracks or slip lines where the ultimate material resistance
had been reached. It has been extensively documented that this
kind of localized material failures cannot be computationally
modeled with the standard finite element method. To this end,
various techniques have been proposed for computational mod-
eling of nonlinear material fracture. Presently, there is a number
of competitive methods, but discussing and comparing them is
beyond the scope of this paper; we refer to e.g. [1] for a review.
In this work, we apply the embedded-discontinuity (ED) concept
initiated in 1990s, see e.g. [2] and [3], and later studied in a num-
ber of works, see e.g. [4–7] for some representative expositions.
Embedded-discontinuity finite element method (ED-FEM) has
been applied (with various levels of success and robustness
[8, 9]) for modeling localized material failures (in static and
dynamic frameworks) in 2d and 3d solids, and also in structural
elements such as beams, plates and shells, mainly for brittle
materials with assumed elastic bulk. We refer to e.g. [10–21] for
some representative works. Among the other methods, let us
mention recently introduced phase field for fracture, see e.g.
[22–26]. It is a smeared crack method, which naturally deals with
crack nucleation, branching and coalesce. This is in contrast with
ED, which is a discrete crack method and usually needs a crack-
tracking algorithm for a single track. Contrary to the smeared
crack methods, the discrete crack methods represent the crack as
a kinematic strong discontinuity, either between the elements
(through cohesive interface) or within the elements (introducing
a cohesive interface by a suitable kinematic enrichment). The
phase field for fracture is easier to implement than the ED con-
cept, but its main problem is that the resulting set of equations is

not well conditioned. It also shares other shortcomings of the
smeared crack techniques, one of them being high computational
costs, because very fine meshes are needed for quality results. On
the other hand, ED-FEM can use rather coarse meshes, however,
ED elements may exhibit locking, and the loss of robustness and
reliability [21].

In this work, we use the ED concept in order to model
material fracture in 2d elasto-plastic solids. In particular, we
apply the Hellinger-Reissner mixed variational principle as a
framework for deriving a stress-hybrid, ED quadrilateral finite
element. The stress-hybrid formulation is chosen because of
an accurate computation of stresses. Among different possibil-
ities for enhancing accuracy of stress and/or strain computa-
tion for the quadrilateral, the stress-hybrid approach (with
Pian-Sumihara stress approximations [27]) has been recog-
nized as the optimal one. It is optimal in a sense that it pro-
vides excellent results already for coarse meshes and has the
best stress convergence among enhanced quadrilaterals, see
e.g. [28–30]. In the ED formulations, the” timing” of the slip
line embedding and its direction depend on element’s stress
state. It is therefore important that the latter is computed as
accurate as possible. On the other hand, the choice of the
stress-hybrid formulation requires an application of a stress-
driven algorithm for an inelastic bulk material model. The for-
mulation that is presented in what follows combines: (a) the
stress-hybrid quadrilateral with Pian-Sumihara stress approxi-
mations [27], (b) an embedded-strong-discontinuity concept
for 2d solids that allows for a linear variation of the displace-
ment-jumps along the discontinuity, (c) an elasto-plastic
material model formulation for the bulk of the element that
includes a stress-driven update for inelastic constitutive rela-
tions at the integration points, and (d) plasticity with
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softening in the interface between two parts of the element,
describing degradation of the cohesion because of slip line
sliding (and opening).

The main novelty of the presented work is a stress-hybrid,
ED quadrilateral for 2d solids, with hardening elasto-plasticity
for the bulk and plasticity with softening for localized slip
line. The formulation is an extension of the stress-hybrid, ED
quadrilateral with elastic bulk proposed in [31]. The second
novelty is a stress-driven update algorithm (at bulk’s integra-
tion points) derived for the fulfillment of elasto-plastic consti-
tutive relations with isotropic hardening (which is similar to
the one presented in [32]). The stress parameters and the
enriched kinematic parameters (describing kinematics of the
slip line) are condensed on the element level. From the out-
side, the element’s unknowns are only nodal displacements,
allowing its smooth implementation into a standard finite
element computer code for nonlinear structural analysis. The
Petrov-Galerkin interpolation is applied, yielding a non-sym-
metric element’s tangent stiffness matrix. As shown in [6],
this kind of interpolation is necessary to avoid a spurious
transition of the stresses across the embedded discontinuity at
the zero-traction state.

The rest of the paper is organized as follows. In Section 2,
the derivation of the finite element is explained, and in Section
3, the implementation issues of the formulation are addressed.
Illustrative numerical examples are given in Section 4, and the
paper is completed by conclusions in Section 5.

2. Stress-hybrid ED formulation

2.1. Kinematics

Consider a quadrilateral occupying Xe � R
2, as shown

in Figure 1. Its geometry is defined by the bi-linear mapping
n ↦x where n 2 ½�1, 1� � ½�1, 1�, x 2 Xe, and

xðnÞ ¼ x, y½ �T ¼
X4
a¼1

NaðnÞxa, xa ¼ xa , ya½ �T , n ¼ n, g½ �T ,

(1)

where xa are coordinates of the node a, and Na are Lagrange
interpolations over the bi-unit square. The parameters that
define element’s displacements are nodal displacements dea ¼
½uxa , uya�T , and amplitudes of the displacement-jumps am, m ¼
1, :::, 4 over the line Ce representing internal interface (also
called discontinuity in what follows). The displacement-jumps
are connected with the four separation modes from Figure 2,
and the line Ce divides element into two non overlapping sub-
domains Xeþ and Xe�, where Xe n Ce is called element’s bulk.
The displacements are approximated over the element as:

uðn,CeÞjXe ¼ ux , uy½ �T ¼
X4
a¼1

NaðnÞdea þ
X4
m¼1

pmðn,CeÞam,

(2)

where the interpolation functions for the displacement-
jumps are, see [33]

p1 ¼ HCðxÞ �
X
a2Xeþ

Na

� �
n, (3)

p2 ¼ HCðxÞÎx �
X
a2Xeþ

NaÎxa, (4)

p3 ¼ HCðxÞ �
X
a2Xeþ

Na

� �
m, (5)

p4 ¼ HCðxÞ m � xð Þ �
X
a2Xeþ

Na m � xað Þ
� �

m, (6)

HCðxÞ ¼ 1 for x 2 Xeþ

0 otherwise
, Î ¼ 0 1

�1 0

� �
:

�
(7)

Here, n ¼ nx , ny½ �T and m ¼ mx ,my½ �T ¼ �ny , nx½ �T are unit
vectors, normal and parallel to the line Ce, x ¼ x� xC, xa ¼
xa � xC, and xC are coordinates of the mid-point of Ce: The
idea behind derivation of (3)-(6) is the following. When the
cohesive tractions at the discontinuity are zero, Xeþ should be
able to: (i) translate as a rigid body along n and m, and (ii)
rotate as a rigid body around xC, all without affecting Xe�:
Additionly, Xeþ should be able to (iii) stretch along m without
affecting Xe� at zero cohesive tractions.

The components of the strain tensor are

� ¼ @ux
@x

,
@uy
@y

,
@ux
@y

þ @uy
@x

" #T
¼
X4
a¼1

Bad
e
a þ

X4
m¼1

Gmam, (8)

where the matrices contain the derivatives of the interpol-
ation functions as:

Ba ¼ @Na
@x , 0, @Na

@y

h iT
, 0, @Na

@y ,
@Na
@x

h iT� �
, (9)

G1 ¼ �
X
a2Xeþ

Ban|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
G1

þdCðxÞBnn|fflfflfflfflfflffl{zfflfflfflfflfflffl}
G 1

, (10)

G2 ¼ �
X
a2Xeþ

BaÎxa|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
G2

þ dC ðxÞBnnnCðxÞ � Bnmðn � xÞð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
G 2

,

(11)

Figure 1. A quadrilateral with an embedded discontinuity.
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G3 ¼ �
X
a2Xeþ

Bam|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
G3

þ dCðxÞBnm|fflfflfflfflfflffl{zfflfflfflfflfflffl}
G 3

, (12)

G4 ¼ HCðxÞBmm�
X
a2Xeþ

Baðm � xaÞm|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
G4

þ dCðxÞBnmnCðxÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
G 4

,

(13)

with the following notation used:

dCðxÞ ¼
�1 for x 2 Ce

0 otherwise
, Bn ¼ nx , 0, ny½ �T , 0, ny , nx½ �T

h i
,

Bm ¼ mx , 0,my½ �T , 0,my ,mx½ �T
h i

:

Here, nC 2 �lC=2, lC=2½ � is a coordinate along Ce (with ori-
gin at xC and direction of m) and lC is the length of discon-
tinuity. Vectors Gm are derivatives of pm with respect to x
and y, see [33] for details. Each of them consists of two
parts: the bounded one (marked with one-bar superscript)
and the unbounded one (marked with two-bars superscript)
with the Dirac-delta distribution dC, see (10)-(13). With this

in mind, we divide the strains into the bounded (regular)
part � and the unbounded (singular) part � as:

� ¼
X4
a,m¼1

Bad
e
a þ Gmam|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�

þ
X4
m¼1

Gmam|fflfflfflfflfflffl{zfflfflfflfflfflffl}
�

: (14)

2.2. Elasto-plasticity for the bulk

We model the material at the bulk material point by the J2
plane stress elasto-plasticity with isotropic hardening, see
e.g. [34]. With W

�ðrÞ denoting the complementary strain
energy, the strain energy is defined as, see e.g. [35]:

Wð� � �pÞ ¼ rTð� � �pÞ �W
�ðrÞ, (15)

where � are regular strains and �p are (regular) plastic
strains. The free energy at the bulk’s material point is sum
of the strain energy W and the hardening potential N :

Wð� � �p, nÞ ¼ W � � �pð Þ þ NðnÞ, (16)

where n � 0 is the strain-like hardening variable. The mech-
anical dissipation pseudo-time rate is (see e.g. [34] for
details of definition):

Figure 2. The separation modes.
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0	D ¼def :rT _�� _W ¼ð16ÞrT _�p� _rTð���pÞþ @W
�

@r

� �T

_r�dN

dn
_n,

(17)

where the dot represents derivative with respect to the
pseudo-time s. If D¼0, we have an elastic case, where the
plastic variables do not change, i.e. _�

p¼0, _n¼0: One can

conclude from (17) that such a case yields ���p¼ @W
�

@r : By

defining the stress-like hardening variable as q¼�dN
dn
, the

pseudo-time rate of plastic dissipation can now be written as

0<D
p¼rT _�

pþq _n: (18)

In what follows, we will use the simplest form of the com-
plementary strain energy W

�ðrÞ ¼ 1
2 r

TC�1r, with

C ¼ E
1� �2

1, �, 0½ �T , �, 1, 0½ �T , 0, 0, 1��
2

� 	Th i
, (19)

where C is chosen for the plane-stress state (in view of
the numerical examples presented below), E is elastic
modulus, and � is Poisson’s ratio. The von Mises yield
function will be used in the yield criterion. The latter can
be written as

/ r, qð Þ ¼ rTAr� 1� q
ry

� �2

	 0, (20)

where ry is the uniaxial yield stress, and A equals (for the
plane stress)

A ¼ 1
2r2y

2, � 1, 0½ �T , �1, 2, 0½ �T , 0, 0, 6½ �T
h i

: (21)

By using (18) at enforcing the principal of the maximum
plastic dissipation, and taking simultaneously into account
the constraint on stresses (20) (see e.g. [34]), the evolution
equations for the internal variables follow as, see e.g. [33]:

_�
p ¼ _c

@/
@r

¼ _c2Ar, (22)

_n ¼ _c
@/
@q

¼ _c
2
ry

1� q
ry

� �
¼ _c

2
ry

ffiffiffiffiffiffiffiffiffiffiffi
rTAr

p
, (23)

where _c � 0 plays the role of the plastic multiplier. The
Kuhn-Tucker loading/unloading conditions, and the consist-
ency condition, also apply: _c � 0,/ 	 0, _c/ ¼ 0, _c _/ ¼ 0:

2.3. Softening plasticity for the discontinuity

We model cohesion degradation in the discontinuity point
with softening plasticity. It is governed by the failure criter-
ion (with the proposal for failure function / left open at the
moment)

/ ¼ /ðt, qÞ 	 0, (24)

where t ¼ tn , tm½ �T are tractions, qðnÞ is traction-like soften-
ing variable, and n � 0 is separation-like softening variable.
Only plastic deformations, which are equal to the displace-
ment-jumps u ¼ ½un, um�T (see Figure 3), take place at the
discontinuity. The components of u are expressed as

unðnCÞ ¼ a1 þ nCa2, umðnCÞ ¼ a3 þ nCa4: (25)

By considering associative plasticity and the principal of
maximum plastic dissipation (see e.g. [34]), we can obtain,
after a short derivation (see [33, 36]), the following evolu-
tion equations

_u ¼ _c
@/
@t

,
_
n ¼ _c

@/

@q
, (26)

where _c � 0 is the plastic multiplier. The Kuhn-Tucker
loading/unloading conditions and the consistency condition

also apply: _c � 0,/ 	 0, _c/ ¼ 0, _c
_
/ ¼ 0:

2.4. Hellinger-Reissner functional

We will obtain the element’s governing equations from the
Hellinger-Reissner functional (see e.g. [34]) that has for the
ED formulation the following form

Pe u, ae, rð Þ ¼ te
ð
Xe
rT � u, aeð Þ � �pð ÞdX

� 1
2
te
ð
Xe
rTC�1rdX�Pext, eðuÞ:

(27)

It treats the displacements u, additional kinematic parame-
ters ae ¼ ½a1, a2, a3, a4�T , and stresses r as independent varia-
bles. Here, te is element thickness, and Pext, e is potential of
element’s external forces. We note that only the regular (i.e.
bounded) elastic strains � � �p enter the functional (27).
The stationary conditions of the above potential are deter-
mined by setting to zero its variation. When performed, the
following element’s governing equations are obtained

Ge
u ¼ te

ð
Xe
�̂TrdX|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Gint, e
u

�Gext, e
u ¼ 0, (28)

Ge
r ¼ te

ð
Xe
r̂T � � �p � C�1rð ÞdX ¼ 0: (29)

Here, Gext, e
u ðûÞ is variation of Pext, eðuÞ, and û, r̂, �̂ ¼

�̂ðû, âe, uÞ denote variations of u, r and �ðu, aeÞ,
respectively.

2.5. Interpolation of stresses

The Hellinger-Reissner functional calls for interpolation of
the stresses over the element. We apply the following inter-
polation

Figure 3. A point at the discontinuity Ce:
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r ¼ rxx ,ryy , rxy½ �T ¼ Sbe, (30)

where be ¼ b1, b2, b3, b4, b5½ �T is vector of stress parameters
and S is matrix of the stress interpolation functions pro-
posed by Pian and Sumihara (see e.g. [27]). It has the fol-
lowing form:

S ¼
1 0 0 j211g j212n

0 1 0 j221g j222n

0 0 1 j11j21g j12j22n

264
375: (31)

where jijði, j ¼ 1, 2Þ are components of the Jacobian matrix
evaluated at element’s center. They are taking the role in
transformation of stresses from n coordinates, where the
stress interpolations are primarily defined, to x coordinates.
This transformation needs to be performed at element’s cen-
ter in order to enable description of a constant stress state
over the element, see e.g. [37].

2.6. Interpolation of variations

In the spirit of the Petrov-Galerkin finite element approxi-
mation, that provides optimal embedded discontinuity finite
element formulations, see [6], we interpolate the variations
of strains �̂ (28) in a different manner than the interpola-
tions of real strains � (14). The following interpolation is
chosen for �̂ :

�̂ ¼
X4
a,m¼1

Bad̂
e
a þ Ĝmâm, (32)

where d̂
e
a and âm are variations of nodal displacements and

the discontinuity parameters. More importantly, Ĝm is a
modified Gm operator that is computed as (the average of
Gm is deducted from Gm):

Ĝm ¼ Gm � 1
AXe

ð
Xe
GmdX,

ð
Xe
ĜmdX ¼ 0, (33)

where AXe is element’s area. We note that the constraint
(33)2 is necessary if the local equilibrium equations (derived
below, see Eq. (40)) are to hold for a constant r: Because
Gm and consequently Ĝm operators have bounded and
unbounded parts, the virtual strains (32) share the same fea-
ture. Therefore, the bounded and unbounded virtual strains
enter the stationary condition (28).

The variations of the stresses are interpolated over the
element in the same manner as the real stresses:

r̂ ¼ Sb̂
e
, (34)

where b̂
e
are virtual stress parameters. The virtual displace-

ments are also interpolated in the same manner as real dis-
placements (2). Because of the assumption that the
parameters of the displacement-jumps are not associated
with the external loading, Gext, e

u in (28) depends only on
nodal virtual displacements.

2.7. Stationary condition equations

In this section, we elaborate on the stationary condition equations
(28) and (29), and we introduce tractions at the discontinuity.

2.7.1. Equation (37)
By using interpolations (30) and (32), we can rewrite (28) as:

Ge
u ¼

X4
a¼1

ð
XenCe

te bda e,TBT
a Sb

edX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Gint, e
u, d

�Gext, e
u

þ
X4
m¼1

ð
Xe
teâmĜ

T
mSb

edX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Gint, e
u, a

¼ 0, 8d̂e
a,8âm

(35)

or, in a compact form:

Ge
u ¼ Gint, e

u, d � Gext, e
u

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

þGint, e
u, a|ffl{zffl}
¼0

¼ 0: (36)

As indicated in (36), two equations need to be considered.
Let us write Gint, e

u, d by vectors of element’s internal nodal
forces and virtual nodal displacements:

f int, ed ¼ f int, e,Ta, d

h iT
,

f int, ea, d ¼ te
ð
XenCe

BT
a Sb

edX ) Gint, e
u, d ¼ d̂

e,T
f int, ed ,

(37)

where d̂
e ¼ d̂

e,T
a

h iT
: In a similar manner, we can write

Gext, e
u as:

Gext, e
u ¼

X4
a¼1

d̂
e,T
a f ext, ea, d ¼ d̂

T
f ext, ed , f ext, ed ¼ f ext, e,Ta, d

h iT
, (38)

where f ext, ed is vector of element’s external nodal forces.
Because d̂

e
is arbitrary, the first equation from (36) yields the

following system of equations in notation from (37) and (38):

d̂
e,T

f int, ed � f ext, ed

� �
¼ 0 ) f int, ed � f ext, ed ¼ f ed ¼ 0, (39)

representing element’s equilibrium between internal and
external nodal forces.

Let us now turn to the second equation from (36). Since âm
are arbitrary, the corresponding integrals should be zero, i.e.

âm

ð
Xe
teĜ

T
mSb

edX|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼0

¼ 0, m ¼ 1, :::, 4: (40)

It is obvious from (40) that the equation can hold for a constant
stress state only if (33)2 is fulfilled. Recall that Ĝm consists of

regular and singular parts that will be denoted as Ĝm and Ĝm

(see Appendix A for details). With this in mind, we introduce
the following notation for the integral from (40):

te
ð
Xe
Ĝ

T
mSb

edX ¼ f X
e

m, a þ f C
e

m, a ¼ f em, a ¼ 0, m ¼ 1, :::, 4,

(41)
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where f X
e

m, a relates to the regular part of Ĝm as (see
Appendix B):

f X
e

m, a ¼ te
ð
XenCe

Ĝ
T

mSb
edX, (42)

and f C
e

m, a relates to the singular part of Ĝm as (see Appendix B):

f C
e

1, a ¼ te
ð
Ce
tndC, f

Ce

2, a ¼ te
ð
Ce
nCtndC, (43)

f C
e

3, a ¼ te
ð
Ce
tmdC, f

Ce

4, a ¼ te
ð
Ce
nCtmdC: (44)

Here, tn and tm are normal and tangential tractions at discon-
tinuity. By collecting eqs. (41)-(44) in vector form, we have:

f X
e

a þ f C
e

a ¼ f X
e

m, a

h iT
þ f C

e

m, a

h iT
¼ f ea ¼ 0: (45)

Eqs. (45) are again the equilibrium equations: they enforce
the weak equilibrium between the stresses in the bulk and
the tractions at discontinuity.

2.7.2. Equation (18)
By using interpolations (14), (30) and (34) in equation (29),
one gets Ge

r ¼ b̂
e,T

f eb ¼ 0, and (since b̂ is arbitrary):

f eb ¼ te
ð
Xe=Ce

ST
X4
a¼1

Bad
e
a þ

X4
m¼1

Gmam � �p � C�1Sbe
 !

dX ¼ 0:

(46)

This equation represents an approximation of the weak
form of the kinematic compatibility equation.

2.7.3. Resulting sets of nonlinear equations
Two stationary conditions of the functional, (28) and (29),
thus result in three sets of nonlinear equations of the elem-
ent, which are to be solved after application of the finite
element assembly procedure for the mesh of the elements.
Those three sets are:

f ed beð Þ ¼ð39Þ f int, ed beð Þ � f ext, ed ¼ 0, (47)

f ea be, aeð Þ ¼ð45Þ f Xe

a beð Þ þ f C
e

a aeð Þ ¼ 0, (48)

f eb dea,b
e, ae


 � ¼ð46Þ 0: (49)

The nodal displacements dea, the element’s stress parameters
be, and the element’s discontinuity parameters ae are
unknowns in the above equations (along with the internal
variables of inelastic constitutive models).

We use the 2� 2 Gauss integration scheme in order to
evaluate the area integrals that appear in Eqs. (39), (45) and
(46). The 2-point Gauss integration scheme is used to evalu-
ate the line integrals that appear in Eq. (45). The internal
variables of the presented finite element formulation are
plastic strains and strain-like hardening variable �p and n at
integration points of the bulk, and displacement-like soften-

ing variable n at integration points of discontinuity.

2.8. Tracking slip line across the mesh

For a non-cracked element, Eq. (45) does not exist, and in
Eq. (46) ae ¼ 0: The discontinuity embedding changes con-
siderable element equations, and only Eq. (39) remains the
same for cracked and non-cracked elements. If such changes
of equations are too many in a single solution increment
(i.e. if a considerable number of elements indicate slip line
embedding), the convergence may be lost in that increment.
Even if the converge is not lost, the obtained solution in
general shows locking, unless the solution computation is
combined with tracking a single slip line across the mesh.
Therefore, we allow in this work for a single slip line propa-
gation across the mesh (or a predefined domain of the
mesh). Moreover, we demand that the slip line extends at
most by one element in one load increment (in Figure 4
such element is gray). This very simple approach can work
relatively well (with a small error in solution) only if the
load increments are very small. For a better crack tracking
algorithm, we refer e.g. to [38].

According to [39], the orientation of the propagation of
the slip line at the material failure point for 2d plane stress
J2 elasto-plasticity is defined as:

tan 2ðHcrÞ ¼ � ~rxx þ ~ryy þ A

~rxx þ ~ryy � A
� 0, (50)

A ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r2
xx þ 4~r2

xy � 2~rxx~ryy þ ~r2
xx

q
, (51)

where Hcr is the angle between the minimum principal
stress ~r2 and tangent to the existing slip line at its current
tip xkCCT: The expression (50) is used in order to compute
the orientation of the extension of the slip line across the
gray element. As for the stresses utilized in (50), we choose
those from the gray element middle point, i.e. r ¼ rjn¼0, g¼0:
This enables computation of unit vectors of the discontinu-
ity, n and m, as n ¼ nð~rÞ and m ¼ mð~rÞ: where m is
defined by Hcr, and n is perpendicular to m. Once the dis-
continuity direction in the gray element is determined, the
trial point of the new tip of the slip line, denoted as xkþ1, trial

CCT
on Figure 4, is known. This trial point can be fixed only
after checking if discontinuity in the gray element is feasible.

Figure 4. The slip line extension.
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If the material failure is predicted (i.e. if / > 0 holds) at
both Gauss integration points on the discontinuity Ce of the
gray element, the discontinuity is embedded and the new tip
of the slip line is xkþ1

CCT ¼ xkþ1, trial
CCT : Otherwise, the discon-

tinuity is not embedded.

3. Computational and implementation aspects

In this section, we will show how the nonlinear equations
(39), (45) and (46) are solved. The solution is searched for
at the discrete pseudo-time values 0, s1, s2, :::, sn�1, sn, snþ1,
:::,T by means of the incremental-iterative Newton scheme.

3.1. Computational procedure

Let us consider a typical pseudo-time increment from sn to
snþ1: Nodal displacements, stresses, discontinuity parameters
and internal variables are given data for each element of the
mesh at pseudo-time sn, i.e.

given : den ¼ de,Ta, n

h iT
, ben, a

e
n, �

p, b
n , n

b
n, n

g

n, e ¼ 1, 2, :::,Nel,

(52)

where ð
Þn denotes value of ð
Þ at sn. The b ¼ 1, 2, 3, 4
denotes the bulk integration points and g¼ 1, 2 the discon-
tinuity integration points. We will iterate in order to com-
pute converged values at snþ1, i.e.

find : denþ1, b
e
nþ1, a

e
nþ1, �

p, b
nþ1, n

b
nþ1, n

g

nþ1: (53)

The iteration counter will be denoted as i. The iterative
computation is split into two phases, because the stationary
point equations can be computed separately from the
internal variables, see e.g. [34]. We first compute iterative
changes of nodal displacements, stress parameters and dis-
continuity parameters, and perform their update as:

de, inþ1 ¼ de, i�1
nþ1 þ Dde, inþ1: (54)

be, inþ1 ¼ be, i�1
nþ1 þ Dbe, inþ1, ae, inþ1 ¼ ae, i�1

nþ1 þ Dae, inþ1: (55)

In the second phase, we immediately use the results of the
first phase and compute iterative values of internal variables
of the bulk and discontinuity: �p, b, inþ1 , n

b, i
nþ1, n

g, i

nþ1 (we will omit
index b in what follows, in particular, in Section 3.3) The
iterations for the values at snþ1 are completed when a prede-
fined convergence tolerance is reached.

3.2. Displacement, stress and discontinuity parameters

The iterative change of nodal displacements Dde, inþ1 in (54) is
determined by solving the global (mesh related) system of
equations

A
Nel
e¼1 Ke, i

nþ1Dd
e, i
nþ1

� �
¼ A

Nel
e¼1 f e, inþ1

� �
, (56)

where A is the finite element assembly operator, Ke, i
nþ1 is ele-

ment’s contribution to the stiffness matrix, and f e, inþ1 is ele-
ment’s contribution to the residual vector. How Ke, i

nþ1 and

f e, inþ1 are obtained is described below in the next
two sections.

3.2.1. Element stiffness matrix
The element consistent tangent stiffness matrix and the
residual vector are obtained by linearization of (39), (45)
and (46) around the last known values of nodal and element
parameters, i.e. de, i�1

nþ1 , be, i�1
nþ1 and ae, i�1

nþ1 : Let us write linear-
ized eqs. (39), (45), and (46) as

Kdd Kdb Kda

Kbd Kbb Kba

Kad Kab Kaa

24 35e, i

nþ1

Dd
Db
Da

0@ 1Ae, i

nþ1

¼
�f d
�f b
�f a

0@ 1Ae, i

nþ1

, (57)

where parts of the element’s tangent stiffness matrix are:

Ke, i
dd, nþ1 ¼

@f d
@d

� �e, i

nþ1
,Ke, i

db, nþ1 ¼
@f d
@b

� �e, i

nþ1

,Ke, i
da, nþ1 ¼

@f d
@a

� �e, i

nþ1
,

Ke, i
bd, nþ1 ¼

@f b
@d

� �e, i

nþ1
,Ke, i

bb,nþ1 ¼
@f b
@b

 !e, i

nþ1

,Ke, i
ba, nþ1 ¼

@f b
@a

� �e, i

nþ1
,

Ke, i
ad, nþ1 ¼

@f a
@d

� �e, i

nþ1
,Ke, i

ab, nþ1 ¼
@f a
@b

� �e, i

nþ1

,Ke, i
aa, nþ1 ¼

@f a
@a

� �e, i

nþ1
:

(58)

Explicit expressions are given in Appendix C.

3.2.2. Condensation of stress and discontinuity
parameters

In order to separate stress and discontinuity parameters
from the displacement parameters, we rewrite (57) as

Kdd Kdh

Khd Khh

� �e, i
nþ1

Dd
Dh

� �e, i

nþ1

¼ �f d
�f h

� �e, i

nþ1

, (59)

where

Ke, i
dh, nþ1 ¼ Kdb Kda

� 	e, i
nþ1,K

e, i
hd, nþ1 ¼

Kbd

Kad

� �e, i
nþ1

,

Ke, i
hh, nþ1 ¼

Kbb Kba

Kab Kaa

� �e, i
nþ1

,

(60)

Dhe, inþ1 ¼
Db
Da

� �e, i

nþ1

, f e, ih, nþ1 ¼
f b
f a

� �e, i

nþ1

: (61)

We can perform condensation of Dhe, inþ1 from (59) in order
to get equation of the form Ke, i

nþ1Dd
e, i
nþ1 ¼ f e, inþ1, see (56). By

doing so, the element’s contribution to the global stiffness
matrix is obtained as

Ke, i
nþ1 ¼ Ke, i

dd, nþ1 � Ke, i
dh, nþ1 Ke, i

hh, nþ1

� ��1
Ke, i

hd, nþ1, (62)

and element’s contribution to the global residual vector is

f e, inþ1 ¼ f e, id, nþ1 � Ke, i
dh, nþ1 Ke, i

hh, nþ1

� ��1
f e, ih, nþ1: (63)

Ke, i
nþ1 from (62) and f e, inþ1 from (63) are element’s contribu-

tion to the global system of equations (56).
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3.2.3. Iterative solution
With (62) and (63) for each element of the mesh, one can
solve the global system of equations (56) for iterative change
of nodal displacements of the finite element mesh. Element’s
iterative change of nodal displacements Dde, inþ1 can be
extracted from that solution in order to compute

Dhe, inþ1 ¼ � Ke, i
hh, nþ1

� ��1
f e, ih, nþ1 þ Ke, i

hd, nþ1Dd
e, i
nþ1

h i
(64)

from (59). New iterative updates of element nodal displace-
ments, stress parameters and discontinuity parameters can
now be obtained by using (54) and (55).

3.2.4. Invertibility of Ke
hh matrix

Computation of (62)-(64) requires inversion of Ke
hh (a 9� 9

matrix if all modes from Figure 2 are considered). This
matrix is well conditioned in most cases. An exception is
when: (i) all modes from Figure 2 are considered, (ii) trac-
tions at discontinuity are zero, and (iii) discontinuity sepa-
rates a single node from the rest of the element. If this is
detected, we replace (45) with

f ea,j ¼ f ea þ j 0, ða2, nþ1 � a2, nÞ, 0, ða4, nþ1 � a4, nÞ½ �T ¼ 0,

(65)

where j > 0 plays a role of the stabilization parameter. This
leads to the replacement of matrix in (57) with Ke

aa, j ¼
Ke

aa þ DIAG 0, j, 0,j½ �: The parameter j should be the smallest
number that is large enough to make matrix Ke

hh, j numerically
invertible. Our numerical tests suggest the order of 10�3: The
introduced stabilization is similar to the one described in [18].

3.3. Internal variables

We can now describe update of the internal variables at the
integration points in the second phase of iteration i in
pseudo-time step ½sn, snþ1�: From the first phase, we have
brought de, inþ1,b

e, i
nþ1 and ae, inþ1: Therefore, the stress parame-

ters be, inþ1 (and thus the bulk stresses) are given and cannot
be changed in the second phase.

3.3.1. Bulk
Only the plastic strains and the strain-like hardening vari-
able can be adapted in order to make the stresses admissible
(i.e. in accordance with the constitutive equations). The pro-
posed stress-driven procedure, which consists of trial and
correction, is suitable for non-zero hardening.

3.3.1.1. Trial-correction procedure. We first compute the
current stresses rinþ1 ¼ Sbe, inþ1, the trial value of the strain-

like hardening variable n
trial, i
nþ1 ¼ nn, and the trial value of

the yield function /
trial, i
nþ1 : If

/
trial, i
nþ1 ¼ /ðrinþ1, qðn

trial, i
nþ1 ÞÞ	 0, (66)

the values of internal variables remain unchanged (the step

from sn to snþ1 is elastic for current iteration): n
i
nþ1 ¼ nn

and e
p, i
nþ1 ¼ epn: If (66) does not hold, a correction is per-

formed, because the step from sn to snþ1 is plastic for cur-
rent iteration. We use the backward Euler integration
scheme to get discrete version of evolution equations (22)
and (23) as:

e
p, i
nþ1 ¼ epn þ cinþ12Ar

i
nþ1,

n
i
nþ1 ¼ nn þ cinþ1

2
ry

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rinþ1


 �T
Arinþ1

q
,

(67)

where cinþ1 ¼ _c
i
nþ1ðsnþ1 � snÞ: The plastic multiplier is

obtained from the requirement that the yield function (20)
is zero, i.e.

/
i
nþ1 ¼ /ðrinþ1, qðn

i
nþ1ðcinþ1ÞÞÞ ¼ /ðcinþ1Þ ¼ 0: (68)

For linear hardening, with hardening modulus Kh � 0, and

qinþ1 ¼ �Khn
i
nþ1, (69)

there is a closed-form solution of (68) as

cinþ1 ¼
ry ry

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rinþ1


 �T
Arinþ1

q
� ry � Khn

i
n

� �
2Kh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rinþ1


 �T
Arinþ1

q (70)

For nonlinear hardening, a local iterative procedure is
needed to get cinþ1 from (68). Once cinþ1 is known, the
updates ep, inþ1 and n

i
nþ1 can be computed with (67).

3.3.1.2. Contribution to the tangent stiffness matrix. Among
the vectors in (57), only f e, ib, nþ1 depends on bulk internal
variable, in particular, on plastic strains �p: In order to get
components of the stiffness matrix in (57), the derivatives of
f e, ib, nþ1 with respect to plastic strains are needed. They can be
obtained by the chain rule as (we will omit superscript i and
subscript nþ 1 in eqs. (71), 72 and 74 below):

@�p

@de
¼ @�p

@�

@�

@de|{z}
B

,
@�p

@be
¼ @�p

@r

@r

@be|{z}
S

,
@�p

@ae
¼ @�p

@�

@�

@ae|{z}
G

:

(71)

The matrices B and G can be easily constructed by using
(9)-(13).

For elastic step, the derivatives of plastic strains are zero
because of no change in �p: For plastic step, one has to elab-
orate on @�p

@� jinþ1 and @�p

@r jinþ1, which can be obtained from
(67) by considering that cinþ1 is function of rinþ1 and �inþ1 :

@�p

@�
¼ @�p

@c
� @c
@�

,
@�p

@r
¼ @�p

@c
� @c
@r

þ c2A, (72)

where

@�p

@c

���i
nþ1

¼ 2Arinþ1: (73)

Derivatives @c=@�jinþ1 and @c=@rjinþ1 in (72) can be
obtained from the consistency condition _c _/jinþ1 ¼ 0:
Because _c

i
nþ1 ¼ cinþ1=ðsnþ1 � snÞ > 0, the consistency con-

dition holds if
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0 ¼ _/ ¼ @/
@r

� �T

_r þ @/
@c

@c
@r

� �T

_r þ @c
@�

� �T

_�

 !

¼ @/
@r

þ @/
@c

@c
@r

 !T

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
0

_r|{z}
6¼0

þ @/
@c|{z}
6¼0

@c
@�

� �T

|fflfflfflffl{zfflfflfflffl}
¼0

_�|{z}
6¼0

: (74)

Since _ri
nþ1 6¼ 0 and _�inþ1 6¼ 0, the consistency condition leads to

@c
@�

jinþ1 ¼ 0,
@c
@r

jinþ1 ¼ � @/
@c

 !�1
@/
@r

jinþ1: (75)

By using (75) and (73) in (72), the two searched expressions are:

@�p

@�
jinþ1 ¼ 0,

@�p

@r
jinþ1

¼ �2Ar� @/
@c

 !�1
@/
@r

24 35i

nþ1

þcinþ12A, (76)

which suggests that the three required derivatives in (71) are:

@�p

@de
jinþ1 ¼ 0,

@�p

@be
jinþ1 ¼

@�p

@r|{z}
ð76Þ

Sjinþ1,
@�p

@ae
jinþ1 ¼ 0: (77)

For linear hardening (69), @/
@r jinþ1 ¼ 2Arinþ1 and @/

@c jinþ1 ¼
� 4Khr

i,T
nþ1Ar

i
nþ1

r2y
: With (77), we can compute the terms of the tan-

gent stiffness matrix related to the derivatives of plastic strains.

3.3.2. Discontinuity
In this section, we present computation of iterative values of

displacement-like softening variable n
g, i

nþ1 and tractions tg, inþ1

at discontinuity integration point g. We first read plastic

variables from the last converged configuration at sn: u
g
n ¼

u
g
n, n, u

g
m, n

h iT
and n

g

n: Here, u
g
n, n ¼ a1, n þ ngCa2, n and u

g
m, n ¼

a3, n þ ngCa4, n are normal and tangential components of dis-
placement jumps, respectively. We also compute current val-
ues of displacement jumps

u
g, i
nþ1 ¼ u

g, i
n, nþ1, u

g, i
m, nþ1

h iT
¼ ai1, nþ1 þ ngCa

i
2, nþ1, a

i
3, nþ1 þ ngCa

i
4, nþ1

h iT
, (78)

and check for change of discontinuity parameters

jju g, i
nþ1 � u

g
njj 	

?
tol or jjae, inþ1 � aenjj 	

?
tol, (79)

which represents change of plastic deformations at discontinuity.

3.3.2.1. Trial-correction procedure. We deal with rigid plas-
ticity with softening. In order to be able to use standard
trial-correction procedure for plasticity, we treat (45) as con-
stitutive equation for t. In the trial phase, we use (45) in
order to obtain trial values of tractions in the two discon-
tinuity integration points

f X
e , e, i

a, nþ1 þ f C
e , e, i

a, nþ1 t1, trial, inþ1 , t2, trial, inþ1

� �
¼ 0 ) t1, trial, inþ1 , t2, trial, inþ1 :

(80)

The resulting equations (80) for the components of t1, trial, inþ1
and t2, trial, inþ1 are

te
ð
Xe

Ĝ
T

1 r
i
nþ1

Ĝ
T

2 r
i
nþ1

Ĝ
T

3 r
i
nþ1

Ĝ
T

4 r
i
nþ1

2666666664

3777777775
dXþ

X2
g¼1

wglCte

2

tg, trial, in, nþ1

tg, trial, in, nþ1 ngC

tg, trial, im, nþ1

tg, trial, im, nþ1 n
g
C

26666664

37777775 ¼ 0, (81)

where w1 ¼ w2 ¼ 1 are integration weights and ngC ¼ fg lC
2 is

integration point location f1 ¼ �
ffiffi
3

p
3 , f2 ¼

ffiffi
3

p
3

� �
. Next, we

evaluate the failure function with the trial values tg, trial, inþ1 and

n
g, trial, i

nþ1 ¼ n
g

n and check its admissibility

/
g, trial, i

nþ1 ¼ / tg, trial, inþ1 , q n
g

n

� �� �
	? 0: (82)

We have now several possible cases at integration point
regarding criteria (79) and (82):

ð79Þ is true and

(
ð82Þ is true ) case ðaÞ on Fig:5
ð82Þ is false ) case ðbÞ on Fig:5

ð79Þ is false) case ðcÞ on Fig:5:

(83)

For case (a) on Figure 5, pseudo-time increment for current
iteration is elastic. The value of softening plasticity variable
remains unchanged and tractions equal to trial ones, i.e.

n
g, i

nþ1 ¼ n
g

n, and tg, inþ1 ¼ tg, trial, inþ1 : For case (b) on Figure 5, the
softening plasticity variable remains unchanged and trac-
tions are computed by enforcing admissibility of the failure
function, i.e.

n
g, i

nþ1 ¼ n
g

n and /
g, i

nþ1 ¼ / tg, inþ1, q n
g, i

n

� �� �
¼ 0 ) tg, inþ1:

(84)

For case (c) on Figure 5, new value of softening plasticity vari-
able is computed by exploiting double meaning of u : Namely,
from the kinematic point of view, u represent displacement
jumps and from the constitutive relations point of view, u
represent plastic deformations. By using the backward Euler
scheme for a discrete form of equation (26), one has

u
g, i
nþ1 ¼ u

g
n þ c

g, i
nþ1

@/
@t

jg, inþ1: (85)

Of course, values from (78) should equal those from (85).
By exploiting this fact, the plastic multiplier can be com-
puted as

c
g, i
nþ1 ¼ u

g, i, ð78Þ
nþ1 � u

g
n

� �T @/
@t

 !�1

jg, inþ1 � 0: (86)

Having determined c
g, i
nþ1, we can proceed by computing

new value of strain-like softening variable by the backward
Euler integration scheme
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n
g, i

nþ1 ¼ n
g

n þ c
g, i
nþ1

@/

@q
jg, inþ1: (87)

Current values of tractions at an integration point are deter-
mined by demanding admissible (i.e. zero) value of the fail-
ure function (24),

/
g, i

nþ1 ¼ / tg, inþ1, q n
g, i

nþ1

� �� �
¼ 0 ) tg, inþ1: (88)

3.3.2.2. Contribution to the tangent stiffness matrix. In
order to compute @f a

@a

� �e, i
nþ1

, see (58), one needs to derive

@t
@a

jg, inþ1 ¼
@t

@u

@u
@a

jg, inþ1 ¼ Ke, i
aa, nþ1: (89)

For case (a) on Figure 5, we choose Ke, i
aa, nþ1 ¼ 0, and the

conditioning of Ke, i
hh, nþ1 has to be checked. If discontinuity

divides element into two parts with 2 nodes, the condition-
ing of Ke, i

hh, nþ1 is good. Otherwise, if there is a part with a
single node, Ke, i

hh, nþ1 is badly conditioned and the procedure
from Section 3.2.4 applies.

For cases (b) and (c) on Figure 5, the term @u
@a jg, inþ1 can be

obtained from (78), and @t
@u

jg, inþ1 is obtained by the chain rule as:

@t

@u
jg, inþ1 ¼

@t

@c
� @c

@u
jg, inþ1,

@c

@u
jg, inþ1 ¼ð86Þ @/

@t

 !�1

jg, inþ1, (90)

where @t
@c
jg, inþ1 in (90) follows from the consistency condition

_c
_
/ðt, cÞjg, inþ1 ¼ 0: Because c

g, i
nþ1 ¼ _c

g, i

nþ1ðsnþ1 � snÞ 6¼ 0, one
considers

0 ¼ _
/

g, i

nþ1 ¼
@/
@t þ @/

@c@c
@t

0@ 1AT

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼0

_t|{z}
6¼0

jg, inþ1, (91)

which leads to

@t

@c
jg, inþ1 ¼ � @/

@c

 !
@/
@t

 !�1

jg, inþ1: (92)

By using (92) and ð90Þ2 in ð90Þ1, one finally gets

@t

@u
jg, inþ1 ¼ � @/

@c

 !
@/
@t

 !�1

� @/
@t

 !�1

jg, inþ1, (93)

which concludes the derivation of Ke, i
aa, nþ1 in (89).

4. Numerical examples

The finite element code was developed by using capabilities
of automatic differentiation of Mathematica’s add-on
AceGen [40]. The code was included into the finite element
code AceFem [41].

4.1. Elasto-plastic analysis of strip with hole

With this example, we test the proposed stress-driven algo-
rithm for elasto-plasticity for the Hellinger-Reissner formu-
lation. Figure 6 shows mesh and boundary conditions (one
quadrant is modeled with conditions considering symmetry)
for the problem with geometry: L¼ 36mm, B¼ 20mm,
thickness t¼ 1mm and R¼ 5mm. The material data is: elas-
tic modulus E¼ 70 kN/mm2, Poisson’s ratio �¼ 0, yield
stress ry ¼ 0:243 kN/mm2 and isotropic hardening modulus
Kh ¼ 0.2 kN/mm2. The strip is loaded by prescribed dis-
placements. In Figure 7, we show the reaction force versus
the prescribed displacement curve and compare it with
results of algorithms from Fuschi et al. [42] and Dujc and
Brank [43]. The results are practicaly identical. In [42], a
standard, plane stress, returning-mapping for von Mises
elasto-plasticity was used. In [43], an Ilyushin-Shapiro, stress
resultant, elasto-plasticity was used. In both [42] and [43],

Figure 5. The discontinuity integration point: (a) the elastic step, (b) the plastic step with u
i
nþ1 ¼ u n, and (c) the plastic step with u

i
nþ1 6¼ u n:

Figure 6. Strip with a hole: geometry and boundary conditions. The mesh
consists of 96 elements and 117 nodes.
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the algorithm was strain-driven, in contrast to the present
one, which is stress-driven.

4.2. Shear test

We consider the strip on Figure 8 with the following data:
Young’s modulus E ¼ 20690kN=cm2, Poisson’s ratio � ¼
0:29, failure shear strength su ¼ 45kN=cm2, softening
modulus Ks ¼ �200kN=cm3, and thickness t¼ 1 cm.

The softening at discontinuity is governed by the follow-
ing failure and softening functions

/ðt, qÞ ¼ jtmj � su � q

 �

, (94)

q ¼ min su, � Ksn
h i

: (95)

We consider only mode II sliding at the discontinuity, i.e.
a1 ¼ a2 ¼ 0: The left-edge mid-point is the starting point
for the tracking algorithm. Figure 9 presents the two used
finite element meshes, and Figure 10 shows perfect agree-
ment of our force versus imposed displacement curves with
those from Mosler [44] for elastic bulk. Results for elasto-
plastic bulk, with yield stress ry ¼ 60kN=cm2 and hardening
modulus Kh ¼ E=10, are also presented in Figure 10, with
three phases of response: elastic, plastic hardening and

localized plastic softening. Both coarse structured and finer
unstructured mesh produce identical results.

4.3. Test for stabilization parameter j

With this test we check for the influence of the stabilization
parameter j on the results. We consider a rectangular (8 cm
� 3 cm) strip with the following data: Young’s modulus E ¼
20690kN=cm2, Poisson’s ratio � ¼ 0:29, failure shear
strength su ¼ 45kN=cm2, softening modulus Ks ¼

Figure 7. Strip with a hole: edge force versus prescribed displacement.

Figure 8. Shear test: geometry and the boundary conditions.

Figure 9. Shear test: meshes. The structured mesh consists of 24 elements and
36 nodes and the unstructured one of 130 elements and 156 nodes.

Figure 10. The force versus the displacement curves for the shear test.

Figure 11. Test for the stabilization parameter: geometry and mesh.

Figure 12. Force versus displacement curves for different values of j.

Figure 13. The geometry of metal strip.
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�200kN=cm3, and thickness t¼ 1 cm. Only mode II sliding
at discontinuity is adopted, i.e. a1 ¼ a2 ¼ 0, with the soften-
ing governed by 94 and 95. Used mesh, boundary condi-
tions, and a predefined cohesive line are shown in Figure
11. The latter crosses both elements in such a way that it
separates one node at each element. The loading is imposed
by prescribed displacements uL and uR. Before the slip outset
uL ¼ uR and after the slip outset uL ¼ 0:999uR in order to
activate the linear variation of the tangential slip along the
cohesive line. Figure 12 shows force-displacement curves for
different values of j. The stabilization procedure with j is
activated if the traction at the discontinuity integration point
drops to zero. If the value of j is too small, the convergence
is lost. For j ¼ 10�3, the analysis becomes stable. In gen-
eral, an optimal (i.e. minimal possible) value for j depends
on matrix Ke

aa:

4.4. Elasto-plastic strip

The geometry and the boundary conditions of a metal strip,
which is loaded by imposed displacements on its right edge,
are presented in Figure 13. The data are: Young’s modulus
E ¼ 21000kN=cm2, Poisson’s ratio � ¼ 0:29, yield stress
ry ¼ 40kN=cm2, hardening modulus Kh ¼ 1000kN=cm2,
failure shear strength su ¼ 21kN=cm2, softening modulus
Ks ¼ �400kN=cm3, and thickness t ¼ 0:055cm: The soften-
ing response is governed by mode II fracture (a1 ¼ a2 ¼ 0),
with (94) and (95). The strip has a small imperfection (see
Figure 13), which is used as a starting point for the tracking
algorithm. Figure 14 indicates that the edge reaction versus
the imposed displacement is practically the same for the
meshes shown in Figure 15.

The computed angles Hcr are: 35:22o for mesh a), 35:26o

for meshes b), c) and e), and 35:27o for mesh d). This is in
nice agreement with Hcr ¼ 35:26o reported in [39].

4.5. Strip with a hole

The problem on Figure 16 was investigated by Mosler [44] for
the following data: Young’s modulus E ¼ 20690kN=cm2,
Poisson’s ratio � ¼ 0:29, failure shear strength su ¼
45kN=cm2, softening modulus Ks ¼ �4000kN=cm3, and
thickness t¼ 0.1 cm. The softening is governed by (94) and
(95). Figure 17 shows finite element meshes. Two slip lines
appear: one above and one below the hole. Our formulation
can track one slip line within one domain, thus we divided
each mesh into two domains corresponding to the lower and
upper half of the strip.

In Figure 18, we plot force versus displacement curves
and the corresponding slip lines for elastic bulk. The curves
are compared with the ones from Mosler [44], with the for-
mer showing slightly higher limit loads. The mesh has an
effect on results, which can be associated with large stress
gradients around the hole. Analysis with elasto-plastic bulk
was performed for yield stress ry ¼ 80kN=cm2 and harden-
ing modulus Kh ¼ E=10: In Figure 19, we show the load-dis-
placement curves and the corresponding slip lines. All
curves are similar up to ux � 0:009cm, and after that we
have slightly different responses. We plot in Figure 20 the
energy/work versus the imposed displacement for the super-
fine mesh. The elastic energy at the pseudo-time s

n
(associ-

ated with the nth incremental step) equals (see (27))

Weðsn Þ ¼
XNel

e¼1

Pint, ejs¼s
n
, (96)

the plastic work related to the hardening at the pseudo-time
s
n
is computed as

Whðsn
Þ ¼

Xn
l¼1

XNel

e¼1

te
ð
Xe

nl � nl�1


 �
ry þ Khnl
� �

dX, (97)

Figure 14. Metal strip: a) structured mesh with 6 elements and 14 nodes, b) structured mesh with 24 elements and 39 nodes, c) structured mesh with 96 elements
and 125 nodes, d) structured mesh with 384 elements and 441 nodes, e) unstructured mesh with 720 elements and 794 nodes, and f) slip lines for the meshes.

Figure 15. The force versus the displacement curves for the metal strip.

Figure 16. The geometry of the steel strip with a hole.
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and the plastic work related to the localized softening at
pseudo-time s

n
is

Wsðsn
Þ ¼

Xn
l¼1

XNel

e¼1

te
ð
Ce

u l � u l�1


 �
� tldC: (98)

Figure 20 shows that Ws increases rapidly after both cracks
are completely formed. Once the cohesion at the cracks is
lost, Ws remains constant. Wh slightly increases even after

the complete decohesion takes place at both cracks. This is
because the cracks are not straight lines, see Figure 19,
and only mode II fracture is assumed. In Figure 21, we
plot Ws for different meshes. The point when a curve
starts to rise sharply is slightly different for each mesh.
These points correspond to the limit-loads. The total soft-
ening plastic work at collapse is practically the same for
all meshes.

Figure 17. Meshes: a) coarse mesh with 129 elements and 159 nodes, b) fine mesh with 502 elements and 561 nodes, c) aligned mesh with 962 elements and
1042 nodes, and d) super-fine mesh with 3241 elements and 3392 nodes.

Figure 18. Force versus the displacement curves (left) and the corresponding slip lines (right).

Figure 19. Force versus the displacement curves for the elasto-plastic bulk (left) and the corresponding slip lines (right).
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4.6. Computational times and efficiency

The Table 1 summarizes the computational times and the
efficiency of the present formulation observed with the
numerical examples presented in Sections 4.1, 4.2, 4.4 and
4.5. The load-application algorithm was relatively simple
with a prescribed minimal and a maximal value of the load-

increment-size which was adjusted based on the number of
iterations in the previous steps. No particular measure to
reduce the computational time was used. The simulation
times reported in Table 1 were observed on a personal lap-
top with the 2.5GHz Intel Core i7 processor and the 16GB
1600MHz DDR3 memory.

The present finite element formulation was relatively
robust for the tested cases. The value of the average number
of iterations per step lies between 4 and 7 and the efficien-
cies of the simulations, computed as the ratio between the
number of step-backs and the total number of steps, were in
most cases 100% or very close to 100%. The only exception
to this behavior was the case presented in Section 4.1. Note
that in this case the softening of the material was not con-
sidered and that a very large portion of the geometry was
deforming in the plastic regime.

5. Conclusions

Failure analysis of 2d J2 solids has been addressed in this
work, and the embedded-discontinuity finite element
method has been used to that end. We have presented a
derivation (that includes many details) of the embedded-
strong-discontinuity, stress-hybrid, quadrilateral finite elem-
ent (based on the Hellinger-Reissner functional), with the
Pian-Sumihara stress interpolations. The formulation uses J2
elasto-plasticity for the bulk of the element, and softening
plasticity for description of localized cohesion in the inter-
face that extends across the element and represents crack or
slip line.

It is worth noting that mixed or hybrid methods (in gen-
eral) do not apply for triangular elements, and for this rea-
son, the popular embedded discontinuity triangular
formulations cannot be extended by using the concept pre-
sented herein.

The motivation behind the presented work is the fact
that the Pian-Sumihara element delivers the best stress con-
vergence among the mixed quadrilateral formulations, and
we consider this important for the embedded-discontinuity
formulation. Namely, when and how to embed the

Figure 20. Energy/work versus the imposed displacement curves for super-
fine mesh.

Figure 21. Softening plastic work versus imposed displacement.

Table 1. The summary of simulations’ efficiencies including the number of equations, the total number of steps, the total number of step-backs, the step effi-
ciency, the total number of iterations, the average number of iterations per step, the total time, and the average time per iteration for the examples presented
in Sections 4.1, 4.2, 4.4 and 4.5. In the Example column the letter E denotes the elastic response of the bulk while P represents the elasto-plastic response.

Example Mesh Equations Steps Step-backs Efficiency (%) Iter. Iter./step Time (s) Time/iter. (s)

4.1 - P 211 855 371 69.7 13126 10.71 2231.33 0.1700
4.2 - E struct. 32 91 0 100.0 439 4.82 169.60 0.3863
4.2 - E unstr. 227 93 3 96.9 586 6.10 514.01 0.8772
4.2 - P struct. 32 377 0 100.0 2038 5.41 425.16 0.2086
4.2 - P unstr. 227 752 0 100.0 3867 5.14 2973.85 0.7690
4.4 - P 6 el. 22 1322 23 98.3 7539 5.61 27.77 0.0037
4.4 - P 24 el. 69 1318 2 99.8 7843 5.94 29.14 0.0037
4.4 - P 96 el. 235 1317 0 100.0 7989 6.07 36.69 0.0046
4.4 - P 384 el. 855 1317 0 100.0 8100 6.15 153.52 0.0190
4.4 - P unstr. 1555 1317 0 100.0 8115 6.16 503.55 0.0621
4.5 - E coarse 292 792 0 100.0 3610 4.56 201.88 0.0559
4.5 - E fine 1071 416 0 100.0 1730 4.16 99.66 0.0576
4.5 - E aligned 2024 692 0 100.0 3091 4.47 114.27 0.0370
4.5 - P coarse 292 4560 0 100.0 26591 5.83 401.99 0.0151
4.5 - P fine 1071 1850 0 100.0 11784 6.37 353.50 0.0300
4.5 - P su.-fine 6659 1303 0 100.0 9441 7.25 744.00 0.0788
4.5 - P aligned 2024 1850 0 100.0 11950 6.46 362.82 0.0304
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discontinuity depends largely on the element stress state,
which should be therefore computed as accurate as possible.
The derived element takes the best available quadrilateral
and extends it for fracture modeling by using the concepts
of the embedded-strong-discontinuity finite element method.
However, it is worth noting that once the discontinuity is
embedded, the accuracy of the element with a crack does
not depend too much on how accurate the computation of
the element stresses is, but rather on the issues related to
the fracture, like ability to avoid the stress-locking, efficiency
of the applied traction-separation cohesive law at the discon-
tinuity, ability to describe kinematics of the crack correctly,
and effectiveness of the implementation of the fracture
aspects of the formulation. Of course, an efficient crack
tracking algorithm is also important for a robust frac-
ture analysis.

The theory, the implementation aspects and the computa-
tional procedure of the presented formulation are given in
detail. Because of the inelastic Hellinger-Reissner formula-
tion, a development of the stress-driven update algorithm
was necessary for J2 elasto-plasticity that was applied for the
bulk of the element. The algorithm that was derived works
nicely for non-zero isotropic hardening and allows for a
simple update at bulk’s integration point. Basically, the hard-
ening parameter is updated in a way that the computed
stresses become admissible when the step is plastic. The
derived algorithm can also be applied for standard elast-
plastic formulations (i.e. those not taking into account frac-
ture modeling) with hardening.

Another nonstandard procedure was adopted for the
treatment of localized softening plasticity. In order to imple-
ment the plasticity with softening in the framework of the
standard trial-correction technique, local (i.e. element) equi-
librium equations were used to compute the trial values of
the tractions at the discontinuity, which deviates the present
implementation of the embedded-discontinuity from more
standard ones.

Funding

The financial support of Slovenian Research Agency (project J2-1722)
is gratefully acknowledged.

References

[1] T. Rabczuk, Computational methods for fracture in brittle and
quasi-brittle solids: State-of-the-art review and future perspec-
tives, ISRN Appl. Math., vol. 2013, pp. 1–38, 2013. DOI: 10.
1155/2013/849231.

[2] J. C. Simo, J. Oliver, and F. Armero, An analysis of strong dis-
continuies induced by strain-softening in rate-independent
inelastic solids, Comput. Mech., vol. 12, no. 5, pp. 277–296,
1993. DOI: 10.1007/BF00372173.

[3] E. Dvorkin, A. M. Cuiti~no, and G. Gioia, Finite elements with
displacement interpolated embedded localization lines insensi-
tive to mesh size and distortions, Int. J. Numer. Meth. Engng.,
vol. 30, no. 3, pp. 541–564, 1990. DOI: 10.1002/nme.
1620300311.

[4] D. Brancherie, and A. Ibrahimbegovic, Novel anisotropic con-
tinuum-discrete damage model capable of representing localized

failure of massive structures. Part I: theoretical formulation and
numerical implementation, Eng. Comput., vol. 26, no. 1/2, pp.
100–127, 2009. DOI: 10.1108/02644400910924825.

[5] D. Dias-da-Costa, J. Alfaiate, L. J. Sluys, and E. J�ulio, Towards
a generalization of a discrete strong discontinuity approach,
Comput. Methods Appl. Mech. Engrg., vol. 198, pp. 3680–3681,
2009.

[6] M. Jirasek, Comparative study on finite elements with
embedded discontinuities, Comput. Methods Appl. Mech.
Engrg., vol. 188, pp. 307–330, 2000.

[7] Y. Zhang, R. Lackner, M. Zeiml, and H. A. Mang, Strong dis-
continuity embedded approach with standard SOS formulation:
Element formulation, energy-based crack-tracking strategy, and
validations, Comput. Methods Appl. Mech. Engrg., vol. 287, pp.
335–366, 2015. DOI: 10.1016/j.cma.2015.02.001.

[8] J. Oliver, A. E. Huespe, S. Blanco, and D. L. Linero, Stability
and robustness issues in numerical modeling of material failure
with the strong discontinuity approach, Comput. Methods
Appl. Mech. Engrg., vol. 195, no. 52, pp. 7093–7114, 2006.
DOI: 10.1016/j.cma.2005.04.018.

[9] J. Oliver, A. E. Huespe, and I. F. Dias, Strain localization,
strong discontinuities and material fracture: matches and mis-
matches, Comput. Methods Appl. Mech. Engrg., vol. 241–244,
pp. 323–336, 2012. DOI: 10.1016/j.cma.2012.06.004.

[10] J. Alfaiate, A. Simone, and L. J. Sluys, Non-homogenous dis-
placement jumps in strong embedded discontinuities, Int. J.
Solids Struct., vol. 40, no. 21, pp. 5799–5817, 2003. DOI: 10.
1016/S0020-7683(03)00372-X.

[11] F. Armero, and D. Ehrlich, Finite element methods for the
multi-scale modeling of softening lines in plates at failure,
Comput. Methods Appl. Mech. Engrg., vol. 195, no. 13–16, pp.
1283–1324, 2006a. DOI: 10.1016/j.cma.2005.05.040.

[12] F. Armero, and D. Ehrlich, Numerical modeling of softening
plastic hinges in thin Euler-Bernoulli beams, Comput. Struct.,
vol. 84, no. 10–11, pp. 641–656, 2006b. DOI: 10.1016/j.comp-
struc.2005.11.010.

[13] J. Dujc, B. Brank, and A. Ibrahimbegovic, Multi-scale computa-
tional model for failure analysis of metal frames that includes
softening and local buckling, Comput. Methods Appl. Mech.
Engrg., vol. 199, no. 21–22, pp. 1371–1385, 2010a. DOI: 10.
1016/j.cma.2009.09.003.

[14] A. Ibrahimbegovic, and D. Brancherie, Combined hardening
and softening constitutive model of plasticity:precursor to shear
slip line failure, Comput. Mech., vol. 31, no. 1–2, pp. 88–100,
2003. DOI: 10.1007/s00466-002-0396-x.

[15] P. J€ager, P. Steinmann, and E. Kuhl, Modeling three-dimen-
sional crack propagation – A comparison of crack path tracking
strategies, Int. J. Numer. Meth. Engng., vol. 76, no. 9, pp.
1328–1352, 2008. DOI: 10.1002/nme.2353.

[16] M. Juki�c, B. Brank, and A. Ibrahimbegovi�c, Embedded discon-
tinuity finite element formulation for failure analysis of planar
reinforced concrete beams and frames, Eng. Struct., vol. 50, pp.
115–125, 2013. DOI: 10.1016/j.engstruct.2012.07.028.

[17] M. Juki�c, B. Brank, and A. Ibrahimbegovi�c, Failure analysis of
reinforced concrete frames by beam finite element that com-
bines damage, plasticity and embedded discontinuity, Eng.
Struct., vol. 75, pp. 507–527, 2014. DOI: 10.1016/j.engstruct.
2014.06.017.

[18] C. Linder, and F. Armero, Finite elements with embedded
strong discontinuities for the modeling of failure in solids, Int.
J. Numer. Meth. Engng., vol. 72, no. 12, pp. 1391–1433, 2007.
DOI: 10.1002/nme.2042.

[19] O. L. Manzoli, and P. B. Shing, A general technique to embed
non-uniform discontinuities into standard solid finite elements,
Comput. Struct., vol. 84, no. 10–11, pp. 742–757, 2006. DOI:
10.1016/j.compstruc.2005.10.009.

[20] T. Saksala, D. Brancherie, and A. Ibrahimbegovic, Numerical
modelling of dynamic rock fracture with a combined 3d con-
tinuum visco-damage embedded discontinuity model, Int. J.

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 691

https://doi.org/10.1155/2013/849231
https://doi.org/10.1155/2013/849231
https://doi.org/10.1007/BF00372173
https://doi.org/10.1002/nme.1620300311
https://doi.org/10.1002/nme.1620300311
https://doi.org/10.1108/02644400910924825
https://doi.org/10.1016/j.cma.2015.02.001
https://doi.org/10.1016/j.cma.2005.04.018
https://doi.org/10.1016/j.cma.2012.06.004
https://doi.org/10.1016/S0020-7683(03)00372-X
https://doi.org/10.1016/S0020-7683(03)00372-X
https://doi.org/10.1016/j.cma.2005.05.040
https://doi.org/10.1016/j.compstruc.2005.11.010
https://doi.org/10.1016/j.compstruc.2005.11.010
https://doi.org/10.1016/j.cma.2009.09.003
https://doi.org/10.1016/j.cma.2009.09.003
https://doi.org/10.1007/s00466-002-0396-x
https://doi.org/10.1002/nme.2353
https://doi.org/10.1016/j.engstruct.2012.07.028
https://doi.org/10.1016/j.engstruct.2014.06.017
https://doi.org/10.1016/j.engstruct.2014.06.017
https://doi.org/10.1002/nme.2042
https://doi.org/10.1016/j.compstruc.2005.10.009


Numer. Anal. Meth. Geomech., vol. 40, no. 9, pp. 1339–1357,
2016. DOI: 10.1002/nag.2492.

[21] A. Stani�c, B. Brank, and D. Brancherie, Fracture of quasi-brittle
solids by continuum and discrete-crack damage models and
embedded discontinuity formulation, Eng. Fract. Mech., vol.
227, pp. 106924, 2020. DOI: 10.1016/j.engfracmech.2020.106924.

[22] M. Ambati, R. Kruse, and L. D. Lorenzis, A phase-field model
for ductile fracture at finite strains and its experimental verifi-
cation, Comput. Mech., vol. 57, no. 1, pp. 149–167, 2016. DOI:
10.1007/s00466-015-1225-3.

[23] P. Areias, T. Rabczuk, and M. A. Msekh, Phase field analysis of
finite-strain plates and shells including element subdivision,
Comput. Methods Appl. Mech. Engrg., vol. 312, pp. 322–350,
2016. DOI: 10.1016/j.cma.2016.01.020.

[24] J. Kiendl, M. Ambati, L. D. Lorenzis, H. Gomez, and A. Reali,
Phase field description of brittle fracture in plates and shells,
Comput. Methods Appl. Mech. Eng., vol. 312, pp. 374–394,
2016. DOI: 10.1016/j.cma.2016.09.011.

[25] G. Lancioni, and G. Royer-Carfagni, The variational approach
to fracture mechanics. A practical application to the French
Pantheon in Paris, J. Elasticity ., vol. 95, no. 1–2, pp. 1–30,
2009. DOI: 10.1007/s10659-009-9189-1.

[26] J. Reinoso, M. Paggi, and C. Linder, Phase field modeling of
brittle fracture for enhanced assumed strain shells at large
deformations: formulation and finite element implementation,
Comput. Mech., vol. 59, no. 6, pp. 981–1001, 2017. DOI: 10.
1007/s00466-017-1386-3.

[27] T. Pian, and K. Sumihara, Rational approach for assumed stress
finite elements, Int. J. Numer. Meth. Engng., vol. 20, no. 9, pp.
1685–1695, 1984. DOI: 10.1002/nme.1620200911.

[28] M. Bischoff, E. Ramm, and D. Braess, A class of equivalent
enhanced assumed strain and hybrid stress finite elements,
Comput. Mech. ., vol. 22, no. 6, pp. 443–449, 1999. DOI: 10.
1007/s004660050378.

[29] C. McAuliffe, and H. Waisman, A Pian-Sumihara type element for
modeling shear bands at finite deformation, Comput. Mech., vol.
53, no. 5, pp. 925–940, 2014. DOI: 10.1007/s00466-013-0940-x.

[30] G. Yu, X. Xie, and C. Carstensen, Uniform convergence and a
posteriori error estimation for assumed stress hybrid finite elem-
ent methods, Comput. Methods Appl. Mech. Engrg., vol. 200, no.
29–32, pp. 2421–2433, 2011. DOI: 10.1016/j.cma.2011.03.018.

[31] J. Dujc, B. Brank, and A. Ibrahimbegovic, Stress-hybrid quadrilat-
eral finite element with embedded strong discontinuity for failure
analysis of plane stresss solids, Int. J. Numer. Meth. Engng., vol.
94, no. 12, pp. 1075–1098, 2013. DOI: 10.1002/nme.4475.

[32] J. Schr€oder, M. Igelb€uscher, A. Schwarz, and G. Starke, A Prange-
Hellinger-Reissner type finite element formulation for small
strain elasto-plasticity, Comput. Methods Appl. Mech. Engrg.,
vol. 317, pp. 400–418, 2017. DOI: 10.1016/j.cma.2016.12.005.

[33] J. Dujc, B. Brank, and A. Ibrahimbegovic, Quadrilateral finite elem-
ent with embedded strong discontinuity for failure analysis of sol-
ids, Comput. Model. Eng. Sci., vol. 69, no. 3, pp. 223–260, 2010b.

[34] A. Ibrahimbegovic, 2009. Nonlinear Solid Mechanics: Theoretical
Formulations and Finite Eeement Solution Methods, Springer,
Dordrecht.

[35] D. Y. Gao, Pure complementary energy principle and triality
theory in finite elasticity, Mech. Res. Commun., vol. 26, pp.
31–37, 1999.

[36] J. Dujc, B. Brank, A. Ibrahimbegovic, and D. Brancherie, An
embedded crack model for failure analysis of concrete solids,
Computers Concrete., vol. 7, no. 4, pp. 331–346, 2010c. DOI:
10.12989/cac.2010.7.4.331.

[37] M. Lavren�ci�c, and B. Brank, Hybrid-mixed shell quadrilateral
that allows for large solution steps and is low-sensitive to mesh
distortion, Comput. Mech., vol. 65, no. 1, pp. 177–192, 2020.
DOI: 10.1007/s00466-019-01759-3.

[38] J. Y. Wu, F. B. Li, and S. L. Xu, Extended embedded finite ele-
ments with continuous displacement jumps for the modeling of
localized failure in solids, Computer Methods Appl. Mech. Eng.,
vol. 285, pp. 346–378, 2015. DOI: 10.1016/j.cma.2014.11.013.

[39] M. Cervera, M. Chiumenti, and D. D. Capua, Benchmarking
on bifurcation and localization in J2 plasticity for plane stress
and plane strain conditions, Comput. Methods Appl. Mech.
Engrg., vol. 241–244, pp. 206–224, 2012. DOI: 10.1016/j.cma.
2012.06.002.

[40] J. Korelc, and P. Wriggers, 2016. Automation of Finite Element
Methods, Springer International Publishing, Switzerland.

[41] J. Korelc, 2020. AceGen, AceFem. http://www.fgg.uni-lj.si/Symech.
[42] P. Fuschi, D. Peri�c, and D. R. J. Owen, Studies on generalized

midpoint integration in rate-independent plasticity with refer-
ence to plane-stress j2-flow theory, Comput. Struct., vol. 43, no.
6, pp. 1117–1133, 1992. DOI: 10.1016/0045-7949(92)90012-O.

[43] J. Dujc, and B. Brank, Stress resultant plasticity for shells revis-
ited, Comput. Methods Appl. Mech. Eng., vol. 247–248, pp.
146–165, 2012. DOI: 10.1016/j.cma.2012.07.012.

[44] J. Mosler, A novel algorithmic framework for the numerical
implementation of locally embedded strong discontinuities,
Comput. Methods Appl. Mech. Engrg., vol. 194, no. 45–47, pp.
4731–4757, 2005. DOI: 10.1016/j.cma.2004.11.015.

Appendix A. Division of Ĝm

By using (33) in (10)-(13), we obtain the following regular and singular
parts of Ĝm :

Ĝ1 ¼ Ĝ 1 þ dCðxÞBnn|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Ĝ 1

, (99)

Ĝ2 ¼ Ĝ 2 þ dCðxÞBnnnCðxÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Ĝ 2

, (100)

Ĝ3 ¼ Ĝ 3 þ dCðxÞBnm|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Ĝ 3

, (101)

Ĝ4 ¼ Ĝ 4 þ dCðxÞBnmnCðxÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Ĝ 4

, (102)

where

Ĝ 1 ¼ G1 � 1
AXe

ð
Xe
G1dX� lC

AXe
Bnn, (103)

Ĝ 2 ¼ G2 � 1
AXe

ð
Xe
G2dX, (104)

Ĝ 3 ¼ G3 � 1
AXe

ð
Xe
G3dX� lC

AXe
Bnm, (105)

Ĝ 4 ¼ G4 � 1
AXe

ð
Xe
G4dX: (106)

Appendix B. Definition of fX
e

m, a, f
Ce

m, a and tractions

By using (99)-(102) in (41) and considering
Ð
XedCð
ÞdX ¼ ÐCeð
ÞdC,

we obtain the following scalar equations for f em, a in (41):

f e1, a ¼ te
ð
Xe
Ĝ

T

1 SbdX|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
fX

e
1, a

þ te
ð
Ce
nTBT

nSb|fflfflfflffl{zfflfflfflffl}
:¼tn

dC

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
f Ce1, a

¼ 0, (107)

f e2, a ¼ te
ð
Xe
Ĝ

T

2 SbdX|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
fX

e
2, a

þ tðeÞ
ð
Ce
nCn

TBT
nSb|fflfflfflffl{zfflfflfflffl}

:¼tn

dC

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f Ce2, a

¼ 0, (108)
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f e3, a ¼ te
ð
Xe
Ĝ

T

3 SbdX|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
fX

e
3, a

þ tðeÞ
ð
Ce
mTBT

nSb|fflfflfflfflffl{zfflfflfflfflffl}
:¼tm

dC

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f Ce3, a

¼ 0, (109)

f e4, a ¼ te
ð
Xe
Ĝ

T

4 SbdX|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
fX

e
4, a

þ tðeÞ
ð
Ce
mTBT

nSb|fflfflfflfflffl{zfflfflfflfflffl}
:¼tm

dC

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f Ce4, a

¼ 0:

(110)

The traction tn equals the stress nTBT
nrjCe , and the traction tm equals

the stress mTBT
nrjCe , with tn and tm representing the normal and the

tangential component of t ¼ ½tn , tm�T :

Appendix C. Components of the tangent
stiffness matrix

By using (37), (39), and (58), we have

Ke
dd ¼ 0, Ke

db ¼ te
ð
Xe
BTSdX, Ke

da ¼ 0, (111)

where B ¼ B1,B2,B3,B4½ �: By using (46), (30), 77 and (58), we obtain

Ke
bd ¼ te

ð
Xe
STBdX,

Ke
bb ¼ te

ð
Xe
ST 2

d/
dc

 !�1

ASbð Þ � d/
dr

� 2cA� C�1

0@ 1ASdX,

Ke
ba ¼ te

ð
Xe
STGdX,

(112)

where G ¼ G1,G2,G3,G4

� 	
: By using (41)-(45) and (58), we finally have

Ke
ad ¼ 0, Ke

ab ¼ te
ð
Xe
Ĝ

T
SdX,

Ke
aa ¼ te

ð
Ce

knn nCknn knm nCknm
nCknn n2Cknn nCknm n2Cknm
kmn nCkmn kmm nCkmm

nCkmn n2Ckmn nCkmm n2Ckmm

266664
377775dC,

(113)

where Ĝ ¼ Ĝ 1, Ĝ 2, Ĝ 3, Ĝ 4

h i
, and knn ¼ @tn

@un
, knm ¼ @tn

@um
, kmn ¼ @tm

@un
,

kmm ¼ @tm
@um

: The latter derivatives depend on a particular form of/, see (93).
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