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A B S T R A C T

This paper presents the formulation of strain-based finite elements for modelling composite beams with finger
joints considering slip between the layers. The finite elements are derived according to Reissner beam theory
based on the modified principle of virtual work where the displacements and rotations are eliminated from the
problem and the axial deformation, shear deformation and curvature of the layers remain only functions to be
approximated within the finite element. Lagrange polynomials are used as shape functions to approximate
the deformations and various interpolation methods are applied to numerical examples, with the Lobatto
integration scheme giving slightly better results than Equidistant. The experimentally measured mechanical
properties needed as input data for the numerical model are given for the four glued laminated beech beams.
The numerical model is thoroughly verified and validated. The results show that the presented finite element
formulation is an efficient tool for practical and accurate calculations.
1. Introduction

Composite structures in general offer a wide range of possibilities,
and the application to structural elements made of wood is only one of
them. Such use of wood results in strong, stable and reliable structural
elements. Glued laminated beams, along with laminated veneer lumber
and cross-laminated timber, are one of the most commonly used forms
of wood composites, where different types of adhesives are used as a
second material. With the adhesive layer between the wood layers, a
continuous interlayer contact is made between the layers to achieve a
strong and rigid bond between the wood layers. However, in reality, ad-
hesives are deformable and neglecting the deformation of the interlayer
contact can lead to an incorrect estimation of the mechanical response
of the composite beams under load, which is why the implementation
of interlayer slip is important. Newmark’s theory [1] is one of the best
known theories for composite beams with partial interaction between
layers. As applicable as the composite structural elements are, the
subject has been further investigated by many researchers for different
levels of complexity of the models. Goodman and Popov [2] showed
the numerical model for a layered beam with deformable connection
between layers considering linear materials. In general, wood can be
described as a linear-elastic material [3,4] when loaded in tension,
for example, but other materials such as steel and concrete or their
composites show pronounced non-linear behaviour. Moreover, large
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deformations of the structural elements require more precise non-
linear analysis, so other models for non-linear materials with geometric
nonlinearity [5–10] have been developed. Some of the models are
based on Bernoulli beam theory and neglect the shear deformation
of the layers [9,11,12], while others take into account more accurate
stress and displacement fields and thus shear deformation [13–19]. In
general, shear stresses are not constant across the thickness of layers
and higher order beam theories have been developed to account for
the distribution of shear stresses in plates and beams [20–22]. One of
useful approaches to solve higher order beam problems is the Carrera
Unified Formulation (CUF) which was first developed for solid plates
and shells [23–25] and has been revised and adapted in the last
decade to solve complex geometric non-linear problems of laminated
composites including beams [26–28]. The method can be used to
describe challenging three-dimensional problems with one-dimensional
and two-dimensional finite elements. It is reported to give accurate
results for complex problems with relatively low computational time
and can also be used for dynamic problems. Due to the typical geometry
of the beam, where one dimension is much larger than the other two,
most models have been derived as planar models, but there are also
some studies that analyse the beam with interlayer slip as a three-
dimensional problem [15,29–31]. For composite beams with a small
number of layers and linear material properties, explicit analytical so-
lutions can be found [11,32–34], while numerical methods are used for
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non-linear materials. [5–10,12,35–38]. For glued laminated beams, the
boards in layers must be connected with structural finger joints [39].
Finger joints often represent a weak point in the structural element
and therefore play an important role in the mechanical response of the
glued laminated beam and according to the literature overview, there
is no model that would be developed according to the beam theory that
would consider the presence of finger joints in the composite beam.

One of the best known models for glued laminated beams with fin-
ger joints is the Karlsruhe model [40–42], which is an improved version
of a model presented by Foschi and Barrett [43]. The Karlsruhe model
takes into account the non-linear behaviour only in compression while
failure can occur only in layers loaded in tension. The positions and
mechanical properties of the finger joints are generated stochastically.
However, the model does not consider the interlayer slip and shear
deformations of the beam.

Displacement-based finite element formulations are often used in
numerical methods [35,36,44–47], but their main drawback is that the
problem of inconsistency of the displacement field may occur, leading
to slip-locking of the model [48]. Strain-based finite elements [36]
have proven to provide an efficient solution to this problem [49].
Shear locking is also one of the phenomena that occur when thin
and slender structural elements are modelled with displacement-based
finite elements formulated for the analysis of thick and stiff structural
elements [22,50]. This problem is solved with various approaches that
usually alternate the integration scheme [22,51,52]. Another solution
to eliminate the problem of shear locking is called Mixed Interpolation
of Tensorial Components (MITC) and presented in [53,54]. It essentially
uses the combination of interpolating displacements and shear strains
of shells and plates. This approach has recently been extended to
higher order beam theories [55] and has been shown to be efficient.
When the finite element formulation is based entirely on interpolating
strains instead of displacements, the problems of shear-locking are also
eliminated [49]. However, in the literature no displacement- or strain-
based finite element formulation for composite beams, that would
consider slip between the layers and finger joints in the layers of the
beams, can be found.

Thus, the objective of this paper is to present a novel type of strain-
based finite element specifically designed for the numerical modelling
of composite beams with finger joints, which takes into account the
interlayer slip and the shear deformations of the layers without being
constrained by the number of layers or the number of finger joints. The
model is primarily designed for modelling glulam beams with layers
with similar shear properties. The materials used in the model can be
linear or non-linear materials. The calculations are fast and efficient
and provide accurate results.

2. Formulation of basic equations of a N-layer composite beams

The formulation of the equations is based on the kinematically
exact Reissner theory for planar beams [56]. The deformation of the
beam is limited to small displacements and small rotations and shear
deformation of the layers is taken into account so the originally straight
cross-sections in the undeformed state remain straight but not perpen-
dicular to the reference axis in the deformed configuration. The basic
subject of our problem is a geometrically linear composite beam with
an arbitrary number of layers 𝑁 , see Fig. 1, subjected to the generalized
load  as shown in Fig. 1. The layers are denoted by 𝑖, where 𝑖 =
{1, 2,… , 𝑁}. They are connected with interlayer contact layer, which
has negligible thickness and known material properties. The interlayer
contact is continuous along the length of the beam 𝐿𝑏𝑒𝑎𝑚. All layers
are initially undeformed and have the same length, i.e. 𝐿𝑖 = 𝐿𝑏𝑒𝑎𝑚.
The beam is defined in Cartesian space R3 = {𝑋, 𝑌 ,𝑍} with fixed
orthonormal global basis vectors 𝐄𝑋 ,𝐄𝑌 and 𝐄𝑍 , where 𝐄𝑍 = 𝐄𝑋 ×𝐄𝑌 .
The global reference axis of the straight, undeformed beam is assumed
to be at the lowest edge of the beam. For simplicity, the reference
axis coincides with the 𝑋 axis of the global coordinate system and the
2
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reference axes of all layers are identical to the global reference axis.
The arbitrary particle of layer 𝑖 is defined with material coordinates
(𝑥𝑖, 𝑦𝑖, 𝑧𝑖). The shape of the cross-section 𝐴𝑖 of layer 𝑖 is considered
rismatic, defined with thickness ℎ𝑖 and width 𝑏 in the plane 𝑌 ,𝑍. The
ross-sections of the layers are homogeneous and their shape does not
hange during deformation. In general, the displacement of any particle
f the beam with coordinates (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) is described by the position
ector 𝐑𝐢(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) as shown in Fig. 2 and written as follows:
𝑖(𝑥𝑖, 𝑧𝑖) =

(

𝑥𝑖 + 𝑢𝑖(𝑥𝑖) + 𝑧𝑖 𝜑𝑖(𝑥𝑖)
)

𝐄𝑋 +
(

𝑧𝑖 +𝑤𝑖(𝑥𝑖)
)

𝐄𝑍 . (1)

here 𝑢𝑖(𝑥𝑖) and 𝑤𝑖(𝑥𝑖) are the horizontal and vertical displacements of
he particle at the reference axis of layer 𝑖 in the 𝑋 and 𝑍 directions,
espectively, the 𝜑𝑖(𝑥𝑖) represents the rotation in the 𝑋𝑍 plane and
efines the position of the arbitrary particle of the cross-section.

In this way, the deformed configuration of the beam is kinematically
escribed by the basic kinematic functions 𝑢𝑖(𝑥𝑖), 𝑤𝑖(𝑥𝑖), and 𝜑𝑖(𝑥𝑖). The
eformations of the layers are generally dependent and constrained
o each other. A partial interaction is defined between the layers,
here the connection between the layers is deformable and has known

tiffness properties. In this work, the partial interaction of the layers is
imited to sliding between the layers, while delamination is restricted
n the transverse direction, see Fig. 2. This is defined with the equation:
𝑖(𝑥𝑖, 𝑦𝑖, 𝑧𝑗 ) = 𝐑𝑖+1(𝑥𝑖+1, 𝑦𝑖+1, 𝑧𝑗 ), (2)

here 𝑖 = {1, 2,… , 𝑁} and 𝑗 = {1, 2,… , 𝑁−1}. 𝐑𝑖 and 𝐑𝑖+1 are the posi-
ion vectors of arbitrary particles 𝑇 𝑖 and 𝑇 𝑖+1 in layers 𝑖 and 𝑖+1, respec-
ively. They are chosen to have different positions in the undeformed
onfiguration, but the same position after deformation, see Fig. 2.

Considering 𝑦𝑖 = 𝑦𝑖+1 = 0 in Eq. (1) and the fact that two adjacent
ayers 𝑖 and 𝑖+ 1 share the same contact 𝑗, 𝑧𝑖 = 𝑧𝑖+1 = 𝑧𝑗 , the Eq. (2) is
ritten:
(

𝑥𝑖 + 𝑢𝑖(𝑥𝑖) + 𝑧𝑗 𝜑𝑖(𝑥𝑖)
)

𝐄𝑋 +
(

𝑧𝑗 +𝑤𝑖(𝑥𝑖)
)

𝐄𝑍
(

𝑥𝑖+1 + 𝑢𝑖+1(𝑥𝑖+1) + 𝑧𝑗 𝜑𝑖+1(𝑥𝑖+1)
)

𝐄𝑋 +
(

𝑧𝑗 +𝑤𝑖+1(𝑥𝑖+1)
)

𝐄𝑍 ,
(3)

r in rearranged component form as
𝑖 − 𝑥𝑖+1 + 𝑢𝑖(𝑥𝑖) − 𝑢𝑖+1(𝑥𝑖+1) + 𝑧𝑗

(

𝜑𝑖(𝑥𝑖) − 𝜑𝑖+1(𝑥𝑖+1)
)

= 0, (4)

𝑖(𝑥𝑖) −𝑤𝑖+1(𝑥𝑖+1) = 0. (5)

Eq. (5) defines that no delamination between the layers is allowed.
he deformation of the interlayer contact between particles 𝑇 𝑖 and 𝑇 𝑖+1

ith coordinates 𝑥𝑖 and 𝑥𝑖+1, respectively, on the undeformed reference
xes is now defined only by the interlayer slip 𝛥𝑗

X(𝑥
𝑖):

𝑗
𝑋 (𝑥

𝑖) = 𝑥𝑖 − 𝑥𝑖+1 ≠ 0, (6)

𝑗
𝑍 (𝑥

𝑖) = 0. (7)

f the expression for the slip 𝛥𝑗
𝑋 (𝑥

𝑖) in the interlayer contact 𝑗 is
mplemented into Eq. (4), the following equation is obtained:
𝑗
𝑋 (𝑥

𝑖) = 𝑢𝑖+1(𝑥𝑖+1) − 𝑢𝑖(𝑥𝑖) + 𝑧𝑗
(

𝜑𝑖+1(𝑥𝑖+1) − 𝜑𝑖(𝑥𝑖)
)

. (8)

n civil engineering, the expected deformation of structural elements
s limited by the serviceability limit state, therefore displacements and
otations are small. Furthermore, similar assumptions can be consid-
red for the interlayer slips. The connection between layers in structural
lements usually has a relatively high stiffness, so that the expected
nterlayer slips are also small. Such simplifications are often used [12,
4,34,57]. Based on Eq. (5) and the assumption of small displacements,
otations and deformations, it follows that the vertical displacements of
ayers of a given cross-section can be considered equal:
𝑖(𝑥𝑖) = 𝑤𝑖+1(𝑥𝑖+1) = 𝑤(𝑥). (9)

aking into account Eq. (9), we further assume that also the rotations
𝑖 𝑖
and pseudocurvatures 𝜅 are the same for all layers 𝑖, where 𝑖 =
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Fig. 1. Model of a composite beam with arbitrary number of layers 𝑁 and arbitrary number of finger joints in the layers.
Fig. 2. A schematic presentation of the geometry of the slips between the layers 𝑖 and 𝑖 + 1 in interlayer contact 𝑗.
{1, 2,… , 𝑁} and 𝑁 is the total number of layers. The layers deform
uniformly in the transverse direction and the shear deformations 𝛾 𝑖 are
also identical for all layers:

𝜑𝑖(𝑥𝑖) = 𝜑𝑖+1(𝑥𝑖+1) = 𝜑(𝑥), (10)

𝛾 𝑖(𝑥𝑖) = 𝛾 𝑖+1(𝑥𝑖+1) = 𝛾(𝑥), (11)

𝜅𝑖(𝑥𝑖) = 𝜅𝑖+1(𝑥𝑖+1) = 𝜅(𝑥). (12)

In this way, the number of unknowns is reduced and these as-
sumptions simplify the model considerably. It should be emphasized,
however, that these assumptions are fully justified only for the cases
where the shear moduli of the layers 𝐺𝑖 are equal. In all other cases
there is a discrepancy in the results compared to those obtained without
the assumption of equal shear deformations, but in the case of glulam
beams this is within 5% and therefore negligible.

Kinematic equations:
Based on the Reissner planar beam theory [56], the kinematic

equations are defined to relate the kinematic quantities, i.e., the dis-
placements and the rotations are related to the deformations 𝜀𝑖, 𝛾 𝑖

and 𝜅𝑖 of the layer 𝑖 and vice versa. According to the Reissner beam
theory [56], the kinematic equations in general form are a first-order
differential equations and can be used to solve mechanical problems
regardless to the magnitude of displacements and rotations and have
been presented in detail in the past [5,14,58]. However, due to the
assumption of small displacements and rotations, the geometry of the
structural element does not change significantly during deformation.
3

With the consistent linearization [59,60] and considering Eqs. (10) –
(12), the generalized kinematic equations can be simplified and written
as linear first-order differential equations:

𝑑𝑢𝑖(𝑥)
𝑑𝑥

− 𝜀𝑖(𝑥) = 0, (13)

𝑑𝑤(𝑥)
𝑑𝑥

+ 𝜑(𝑥) − 𝛾(𝑥) = 0, (14)

𝑑𝜑(𝑥)
𝑑𝑥

− 𝜅(𝑥) = 0. (15)

The deformations in Eq. (13) – (15) are the longitudinal deformation
of the material, 𝜀𝑖(𝑥), the shear deformation, 𝛾(𝑥), and the pseudocur-
vature or bending deformation, 𝜅(𝑥), of the cross-section of the beam.
When 𝛾(𝑥) = 0, the 𝜀𝑖(𝑥) also represents the specific change in length
of the reference axis of the layer 𝑖, and when 𝜀𝑖(𝑥) = 0, the pseudocur-
vature 𝜅 represents the actual curvature of the reference axis of the
layers [6,61]. The longitudinal deformation 𝐷𝑖 of the material at an
arbitrary position over the height of the beam can be determined with
the following equation:

𝐷𝑖(𝑥, 𝑧𝑖) = 𝜀𝑖(𝑥) + 𝑧𝑖 𝜅, (16)

where 𝑖 = {1, 2,… , 𝑁}.

Equilibrium equations:
The equilibrium equations are used to connect the internal forces

and moments caused by the external load. For multilayer elements
there are two types of loads acting on each layer 𝑖. The external
distributed load 𝐩𝑖𝑒𝑥(𝑥) = 𝑝𝑖𝑒𝑥,𝑋 (𝑥)𝐄𝑋 + 𝑝𝑖𝑒𝑥,𝑍 (𝑥)𝐄𝑍 and 𝐦𝑖

𝑒𝑥(𝑥) =
𝑚𝑖 (𝑥)𝐄 , and the load induced by adjacent layers and transmitted
𝑒𝑥,𝑌 𝑌
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through the contact between layers and therefore called contact load,
𝐩𝑖𝑐 (𝑥) = 𝑝𝑖𝑐,𝑋 (𝑥)𝐄𝑋 + 𝑝𝑖𝑐,𝑍 (𝑥)𝐄𝑍 and 𝐦𝑖

𝑐 (𝑥) = 𝑚𝑖
𝑐,𝑌 (𝑥)𝐄𝑌 , where the

ubscripts ‘‘𝑒𝑥’’ and ‘‘𝑐’’ denote the applied external and contact con-
ributions, respectively. Furthermore, the external load can either be
istributed along an arbitrarily long section of the beam 𝐿𝑃 ∈ [0, 𝐿𝑏𝑒𝑎𝑚]

or concentrated to one point as concentrated force 𝑃 , which can be
applied only at the end of the beam element.

As already indicated, the multilayer beams consist of 𝑁 layers
whose mechanical behaviour is interdependent. Therefore, deformation
of one layer causes deformation of the other layers. Laminated beams
with 𝑁 layers have 𝑁 − 1 interlayer contact surfaces. The notation
𝑗 = {1, 2,… , 𝑁 − 1} is used to denote the contact area between layers
and it is assumed that for 𝑖 < 𝑁 , 𝑖 = 𝑗, so that the contact area at the
top of the layer has the same notation as the layer. This means that for
the first layer 𝑖 = 1, the contact tractions 𝑝𝑖,𝑗−1𝑐,𝑋 (𝑥) and 𝑝𝑖,𝑗−1𝑐,𝑍 (𝑥) are equal
to 0. In this way, the traction in the contact surface 𝑗 acts on the layers
𝑖 and 𝑖 + 1, as shown in Fig. 3. Similarly as kinematic equations (13) –
(15), the equilibrium equations in 𝑌 and 𝑍 directions written about the
reference axis of the composite beam can be simplified:

𝑑𝑁 𝑖(𝑥)
𝑑𝑥

+ 𝑝𝑖𝑒𝑥,𝑋 (𝑥) + 𝑝𝑖,𝑗𝑐,𝑋 (𝑥) − 𝑝𝑖,𝑗−1𝑐,𝑋 (𝑥) = 0, (17)

𝑑𝑄(𝑥)
𝑑𝑥

+
𝑁
∑

𝑖=1
𝑝𝑖𝑒𝑥,𝑍 (𝑥) = 0, (18)

𝑑𝑀(𝑥)
𝑑𝑥

−𝑄(𝑥) +
𝑁
∑

𝑖=1
𝑚𝑖
𝑒𝑥,𝑌 (𝑥) = 0, (19)

here 𝑄(𝑥) and 𝑀(𝑥) are the total shear force and the total bending
oment, respectively:

(𝑥) =
𝑁
∑

𝑖=1
𝑄𝑖(𝑥), (20)

(𝑥) =
𝑁
∑

𝑖=1
𝑀 𝑖(𝑥). (21)

ote that all equilibrium forces 𝑁 𝑖(𝑥), 𝑄𝑖(𝑥), 𝑀 𝑖(𝑥), 𝑄(𝑥), and 𝑀(𝑥)
in Eqs. (17) – (21) are expressed about the reference axis of the beam
(see Fig. 3). The kinematic aspect of the mechanical behaviour of the
interlayer contact is described by Eq. (8). Like the material of the
layers, the material of the interlayer contact can deform arbitrarily,
e.g., elastic, plastic, hyperelastic, etc. The behaviour is defined by the
constitutive law of the interlayer contact. This information, similar to
the constitutive laws of the layers, is also determined by experimental
tests. In general, the results of the tests are arbitrary constitutive
functions 𝑗

X and 𝑗
Z, where 𝑗 = {1, 2,… , 𝑁 − 1}. Since delamination,

i.e., the separation of the layers in the transverse direction is neglected
in this model, Eq. (5), only the constitutive law for the horizontal
component of slip is defined:

𝑝𝑖,𝑗𝑐,𝑋 (𝑥) = 𝑗
X 𝛥𝑗

𝑋 (𝑥). (22)

The simplest form of the constitutive lay applies to the linear-elastic
interlayer contact and is associated with a constant stiffness value 𝐾𝑗

X.
Then the contact traction is defined as:

𝑝𝑖,𝑗𝑐,𝑋 (𝑥) = 𝐾𝑗
X 𝛥𝑗

𝑋 (𝑥). (23)

Constitutive equations
For the beam to be in static equilibrium, the internal forces and

moments induced by the external load must be undertaken by the
material of the composite beam. The constitutive equations describe
the relationship between the deformation of the beam and the internal
forces. Therefore, the general form of the constitutive equations for
4

a

layer 𝑖 = {1, 2,… , 𝑁} is presented by Eqs. (24) – (26), taking into
account the assumption of a homogeneous cross-section of the layers.

𝑁 𝑖(𝑥) = 𝑁 𝑖
𝐶

(

𝜀𝑖(𝑥), 𝜅𝑖(𝑥)
)

= ∫𝑖
𝜎𝑖(𝑥, 𝑧𝑖) 𝑑𝐴 = ∫𝑖

𝜎𝑖
(

𝐷𝑖(𝑥, 𝑧𝑖)
)

𝑑𝐴,

(24)

𝑖(𝑥) = 𝑄𝑖
𝐶

(

𝛾 𝑖(𝑥)
)

= ∫𝑖
𝜏 𝑖(𝑥, 𝑧𝑖) 𝑑𝐴 = ∫𝑖

𝜏𝑖
(

𝛾 𝑖(𝑥, 𝑧𝑖)
)

𝑑𝐴, (25)

𝑖(𝑥) = 𝑀 𝑖
𝐶

(

𝜀𝑖(𝑥), 𝜅𝑖(𝑥)
)

= ∫𝑖
𝑧𝑖 𝜎𝑖(𝑥, 𝑧𝑖) 𝑑𝐴 = ∫𝑖

𝑧𝑖 𝜎𝑖
(

𝐷𝑖(𝑥, 𝑧𝑖)
)

𝑑𝐴.

(26)

he 𝑁 𝑖
𝐶 , 𝑄𝑖

𝐶 and 𝑀 𝑖
𝐶 are the constitutive axial and shear forces and the

onstitutive bending moment of layer 𝑖, respectively, and are defined as
he resultants of the normal and shear components of the stress tensor.
he stress tensor consists of the normal stress 𝜎𝑖 and the shear stress 𝜏 𝑖

nd can be expressed by constitutive functions of the material  𝑖
1 and

𝑖
2:

𝑖(𝑥, 𝑧𝑖) =  𝑖
1

(

𝐷𝑖(𝑥, 𝑧𝑖)
)

, (27)

𝑖(𝑥, 𝑧𝑖) =  𝑖
2

(

𝛾(𝑥, 𝑧𝑖)
)

, (28)

hich are determined by uniaxial compression and/or tensile tests and
xperimental shear tests and generally describe any material model
linear elastic, hyperelastic, plastic, etc.).

The kinematic equations (13) – (15), the equilibrium equations
17) – (19), and the constitutive equations (24) – (26), represent the
undamental system of 6𝑁 first-order linear differential equations and
𝑁 algebraic equations requiring 6𝑁 unknown integration constants.
o obtain the complete solution for the unknowns 𝑢𝑖, 𝑤𝑖, 𝜑𝑖, 𝑁 𝑖, 𝑄𝑖, and
𝑖, the boundary conditions must be defined. As the name implies,

he boundary conditions define selected mechanical quantities at the
oundaries of the layers, i.e., 𝑥 = 0 and 𝑥 = 𝐿, where 𝐿 represents
he length of the finite element. They are usually predefined by the
eometry of the model (e.g., the type of supports), but using only
ne type of boundary conditions does not necessarily lead to a unique
olution of the system. Therefore, a combination of Neuman (natural)
nd Dirichlet (essential) boundary conditions must be used. For each
egree of freedom, only one of the two types of the boundary conditions
ay be used, either Neuman’s or Dirchlet’s. This is determined by
qs. (29) – (34) at the boundaries of the layers of the finite element.

oundary conditions:
= 0 ∶

𝑖
1 − 𝑢𝑖(0) = 0 or 𝑆 𝑖

1 +𝑁 𝑖(0) = 0, (29)

2 −𝑤(0) = 0 or 𝑆2 +𝑄(0) = 0, (30)

3 − 𝜑(0) = 0 or 𝑆3 +𝑀(0) = 0. (31)

= 𝐿 ∶

𝑖
4 − 𝑢𝑖(𝐿) = 0 or 𝑆𝑖

4 −𝑁 𝑖(𝐿) = 0, (32)

5 −𝑤(𝐿) = 0 or 𝑆5 −𝑄(𝐿) = 0, (33)

6 − 𝜑(𝐿) = 0 or 𝑆6 −𝑀(𝐿) = 0, (34)

here 𝑈 𝑖
1, 𝑈2, 𝑈3, 𝑈 𝑖

4, 𝑈5, 𝑈6 represent the generalized boundary
isplacements for the six degrees of freedom. The 𝑆 𝑖

1, 𝑆2, 𝑆3, 𝑆 𝑖
4, 𝑆5,

6 are the concentrated forces at the end of the element of the beam

nd 𝑖 = {1, 2,… , 𝑁}.
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Fig. 3. Contact load acting on layer 𝑖, and equilibrium forces 𝑁 𝑖(𝑥), 𝑄𝑖(𝑥), 𝑀 𝑖(𝑥) of layer 𝑖 considered on the reference axis of the beam.
2.1. Modified principle of virtual work

The basic system of kinematic, equilibrium and constitutive equa-
tions is very complex to solve in general form, and the analytical
solution is only possible if the model is somewhat simplified with a
limited number of layers and a limited number of finger joints. The sys-
tem of kinematic (13) – (15), equilibrium (17) – (19), and constitutive
(24) – (26) equations can be solved numerically using the finite element
method. For our numerical model, we used the finite elements based
on the approximation of strains, first introduced by Planinc [36]. The
formulation of finite elements is based on the principle of virtual work.
The following derivation of finite elements is also based on the work
of Čas [57], Schnabl [14], and Kroflič [5] with a modified application
for multilayer composite beams. The basic formulation of the principle
of virtual work essentially states that the work of the internal forces
equals the work of the external loading on infinitesimally small virtual
deformations and displacements [35,62]. When the composite beam
consists of several layers, the virtual work of the beam is equal to the
sum of the virtual work for all the layers and is written in general form
as:

𝛿𝑊 =
𝑁
∑

𝑖=1
𝛿𝑊 𝑖 =

𝑁
∑

𝑖=1

(

∫

𝐿

0
𝑁 𝑖𝛿𝜀𝑖𝑑𝑥 + ∫

𝐿

0
𝑄𝛿𝛾𝑑𝑥 + ∫

𝐿

0
𝑀𝛿𝜅𝑑𝑥−

− ∫

𝐿

0
(𝑝𝑖𝑋 + 𝑝𝑖,𝑗𝑐,𝑋 − 𝑝𝑖,𝑗−1𝑐,𝑋 )𝛿𝑢𝑖 − ∫

𝐿

0
𝑝𝑖𝑍𝛿𝑤−

− ∫

𝐿

0
𝑚𝑖
𝑌 𝛿𝜑 −

6
∑

𝑘=1
𝑆 𝑖
𝑘 𝛿𝑈

𝑖
𝑘

)

.

(35)

The quantities 𝛿𝑢𝑖, 𝛿𝑤, and 𝛿𝜑 are virtual perturbations of the hori-
zontal and vertical displacements and rotations of the reference axis
𝑥, and 𝛿𝜀𝑖, 𝛿𝛾, and 𝛿𝜅 are virtual perturbations of the axial and shear
deformations and curvature of the layer 𝑖. The 𝛿𝑈 𝑖

1, 𝛿𝑈2, 𝛿𝑈3, 𝛿𝑈 𝑖
4, 𝛿𝑈5,

𝛿𝑈6 are virtual perturbations of generalized nodal kinematic quantities:

𝛿𝑈 𝑖
1 = 𝛿𝑢𝑖(0), 𝛿𝑈 𝑖

4 = 𝛿𝑢𝑖(𝐿),

𝛿𝑈2 = 𝛿𝑤(0), 𝛿𝑈5 = 𝛿𝑤(𝐿),

𝛿𝑈3 = 𝛿𝜑(0), 𝛿𝑈6 = 𝛿𝜑(𝐿).

(36)

Since it is assumed that the constitutive equations, Eqs. (24) – (26), are
identically satisfied, the equilibrium forces and bending moments can
be replaced by constitutive forces and bending moments, i.e., 𝑁 𝑖 = 𝑁 𝑖

𝐶 ,
𝑄 = 𝑄𝐶 , 𝑀 = 𝑀𝐶 . According to the kinematic equations, Eqs. (13) –
(15), there are only three independent variables between 𝑢𝑖, 𝑤, 𝜑, 𝜀𝑖,
𝛾, and 𝜅. It has been shown that the finite element formulation using
the kinematic quantities 𝑢𝑖, 𝑤, 𝜑 may exhibit locking and is not as
robust as the formulation using the deformation variables 𝜀𝑖, 𝛾, and 𝜅 as
unknowns [49]. For this reason, the finite element formulation used is
referred to as a locking-free strain-based finite element formulation [35,
36]. The problem is considered as a constrained variational calculus
problem and the kinematic equations as the constraints of the problem.
To introduce them into the principle of virtual work in Eq. (35), the
kinematic equations, Eqs. ((13)–(15)), are multiplied by the Lagrangian
multipliers 𝑅𝑖 , 𝑅 and 𝑅 . The multipliers can be chosen arbitrarily,
5

1 2 3
but must be differentiable, i.e., continuous on 𝑥 ∈ [0, 𝐿𝑖]. Since it is
assumed that all layers have the same initial length, the products are
then integrated over the length of the finite element 𝐿. As we proceed,
the expressions are varied with respect to the unknown displacements
and strains 𝑢𝑖, 𝑤, 𝜑, 𝜀𝑖, 𝛾, 𝜅, and the Lagrangian multipliers 𝑅𝑖

1, 𝑅2,
𝑅3. The expression with the first derivatives of displacements and
strains is partially integrated and added to the principle of virtual work
𝛿𝑊 , Eq. (35). The final and simplified form of the functional modified
principle of virtual work 𝛿𝑊 ∗∗ for a composite beam with interlayer slips
is written as:

𝛿𝑊 ∗∗ =
𝑁
∑

𝑖=1

{

∫

𝐿

0

(

(𝑁 𝑖
𝐶 − 𝑅𝑖

1) 𝛿𝜀
𝑖 + (𝑄𝐶 − 𝑅2) 𝛿𝛾 + (𝑀𝐶 − 𝑅3) 𝜅

)

𝑑𝑥

+
(

𝑢𝑖(𝐿) − 𝑢𝑖(0) − ∫

𝐿

0
𝜀𝑖𝑑𝑥

)

𝛿𝑅𝑖
1

+
(

𝑤(𝐿) −𝑤(0) − ∫

𝐿

0
(𝛾 − 𝜑)𝑑𝑥

)

𝛿𝑅2

+
(

𝜑(𝐿) − 𝜑(0) − ∫

𝐿

0
𝜅𝑑𝑥

)

𝛿𝑅3

−
(

𝑅𝑖
1(0) + 𝑆𝑖

1

)

𝛿𝑢𝑖(0) −
(

𝑅2(0) + 𝑆2

)

𝛿𝑤(0)

−
(

𝑅3(0) + 𝑆3

)

𝛿𝜑(0)
}

+
(

𝑅𝑖
1(𝐿) − 𝑆𝑖

4

)

𝛿𝑢𝑖(𝐿) +
(

𝑅2(𝐿) − 𝑆5

)

𝛿𝑤(𝐿)

+
(

𝑅3(𝐿) − 𝑆6

)

𝛿𝜑(𝐿) = 0.

(37)

This formulation expresses the modified principle of virtual work with
only 𝑁 +2 unknown functions 𝜀𝑖(𝑥), 𝛾(𝑥), and 𝜅(𝑥). All other unknowns
are represented by their boundary values 𝑅𝑖

1(0), 𝑅2(0), 𝑅3(0), 𝑅𝑖
1(𝐿),

𝑅2(𝐿), and 𝑅3(𝐿), which are known and defined by the position of the
element in 𝑁-layer composite beam. The basic equations are non-linear
and generally cannot be solved in closed form, so a method involv-
ing approximation of the unknowns must be considered. The Petrov–
Galerkin method is used to translate the complex continuous functions
into smaller discrete functions that are easier to solve. At this point the
assumptions defined by Eqs. (9) – (12) are used in the derivation of the
initial Euler–Lagrange equations for the composite beam.

The element is divided into 𝑁𝛼 −1 smaller sections with 𝑁𝛼 nodes,
where 𝛼 = {𝜀, 𝛾, 𝜅}. We assume that all layers have the same number of
nodes, i.e., 𝑁𝜀,𝑖 = 𝑁𝜀,𝑖+1 = 𝑁𝜀, 𝑁𝛾,𝑖 = 𝑁𝛾,𝑖+1 = 𝑁𝛾 , and 𝑁𝜅,𝑖 = 𝑁𝜅,𝑖+1 =
𝑁𝜅 . A Lagrange polynomial interpolation is used to approximate the
unknown functions 𝜀𝑖(𝑥), 𝛾(𝑥), and 𝜅(𝑥), although this is not a limitation
of this method. The interpolation takes the form:

𝜀𝑖(𝑥) ≈
𝑁𝜀
∑

𝑛=1
𝐿𝑛(𝑥) 𝜀𝑖𝑛, (38)

𝛾(𝑥) ≈
𝑁𝛾
∑

𝐿𝑛(𝑥) 𝛾𝑛, (39)

𝑛=1
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𝜅(𝑥) ≈
𝑁𝜅
∑

𝑛=1
𝐿𝑛(𝑥) 𝜅𝑛, (40)

where the 𝜀𝑖𝑛, 𝛾𝑛, and 𝜅𝑛 are the discrete values of the axial, transverse
and rotational strains determined at the nodes of the element and
𝑖 = {1, 2,… , 𝑁}. Similarly, the variations of the strains 𝛿𝜀𝑖, 𝛿𝛾, and
𝛿𝜅 are interpolated, see Eqs. (41) – (43), using the discrete nodal values
𝛿𝜀𝑖𝑛, 𝛿𝛾𝑛, and 𝛿𝜅𝑛. The collocation points for the variation are chosen to
coincide with the nodal points.

𝛿𝜀𝑖(𝑥) ≈
𝑁𝜀
∑

𝑛=1
𝐿𝑛(𝑥) 𝛿𝜀𝑖𝑛, (41)

𝛿𝛾(𝑥) ≈
𝑁𝛾
∑

𝑛=1
𝐿𝑛(𝑥) 𝛿𝛾𝑛, (42)

𝛿𝜅(𝑥) ≈
𝑁𝜅
∑

𝑛=1
𝐿𝑛(𝑥) 𝛿𝜅𝑛. (43)

The interpolations in Eqs. (38) – (43) are now substituted into the func-
tional 𝛿𝑊 ∗∗ in Eq. (37). The fundamental lemma of the calculus of
variations states that all coefficients associated with the independent
variations in the functional must equal 0. In this way, the system
of discrete generalized Euler–Lagrange equilibrium equations of the
𝑁-layer composite beam are obtained as follows:

𝑓(𝑖−1)𝑁𝜀+𝑛 = ∫

𝐿

0
(𝑁 𝑖

𝐶 − 𝑅𝑖
1)𝐿𝑛(𝜉) 𝑑𝜉 = 0; 𝑛 = {1, 2,… , 𝑁𝜀},

(44)

𝑓𝑁 ⋅𝑁𝜀+𝑛 = ∫

𝐿

0
(𝑄𝐶 − 𝑅2)𝐿𝑛(𝜉) 𝑑𝜉 = 0; 𝑛 = (1, 2,… , 𝑁𝛾},

(45)

𝑓𝑁 ⋅𝑁𝜀+𝑁𝛾+𝑛 = ∫

𝐿

0
(𝑀𝐶 − 𝑅3)𝐿𝑛(𝜉) 𝑑𝜉 = 0; 𝑛 = {1, 2,… , 𝑁𝜅},

(46)

𝑓𝑁 ⋅𝑁𝜀+𝑁𝛾+𝑁𝜅+𝑖 = 𝑢𝑖(𝐿) − 𝑢𝑖(0) −
𝑁𝜀
∑

𝑛=1
𝐿∗
𝑛(𝑥) 𝜀

𝑖
𝑛𝑑𝑥 = 0, (47)

𝑓𝑁 ⋅(𝑁𝜀+1)+𝑁𝛾+𝑁𝜅+1 = 𝑤(𝐿) −𝑤(0) + 𝜑(0)𝐿 −
𝑁𝛾
∑

𝑛=1
𝐿∗
𝑛 𝛾𝑛 +

𝑁𝜅
∑

𝑛=1
𝐿∗∗
𝑛 𝜅𝑛 = 0,

(48)

𝑓𝑁 ⋅(𝑁𝜀+1)+𝑁𝛾+𝑁𝜅+2 = 𝜑(𝐿) − 𝜑(0) −
𝑁𝜅
∑

𝑛=1
𝐿∗
𝑛(𝑥) 𝜅𝑛𝑑𝑥 = 0, (49)

𝑓𝑁 ⋅(𝑁𝜀+1)+𝑁𝛾+𝑁𝜅+2+𝑖 = 𝑆𝑖
1 + 𝑅𝑖

1(0) = 0, (50)

𝑓𝑁 ⋅(𝑁𝜀+2)+𝑁𝛾+𝑁𝜅+3 = 𝑆2 + 𝑅2(0) = 0, (51)

𝑓𝑁 ⋅(𝑁𝜀+2)+𝑁𝛾+𝑁𝜅+4 = 𝑆3 + 𝑅3(0) = 0, (52)

𝑓𝑁 ⋅(𝑁𝜀+2)+𝑁𝛾+𝑁𝜅+4+𝑖 = 𝑆𝑖
4 − 𝑅𝑖

1(0) − ∫

𝐿

0

(

𝑝𝑖𝑋 + 𝑝𝑖,𝑗𝑐,𝑋 − 𝑝𝑖,𝑗−1𝑐,𝑋

)

𝑑𝑥 = 0,

(53)

𝑓𝑁 ⋅(𝑁𝜀+3)+𝑁𝛾+𝑁𝜅+5 = 𝑆5 − 𝑅2(0) −
𝑁
∑

𝑖=1
∫

𝐿

0
𝑝𝑖𝑍𝑑𝑥 = 0, (54)

𝑓𝑁 ⋅(𝑁𝜀+3)+𝑁𝛾+𝑁𝜅+6 = 𝑆6 − 𝑅3(0) − ∫

𝐿

0

(

𝑅2 −
𝑁
∑

𝑖=1
𝑚𝑖
𝑌

)

𝑑𝑥 = 0, (55)

where 𝑖 = (1, 2,… , 𝑁), 𝑗 = (1, 2,… , 𝑁 − 1) and 𝑖 = 𝑗. The integrals of
the Lagrangian polynomials are denoted by 𝐿∗

𝑛(𝑥) and 𝐿∗∗
𝑛 (𝑥) and are:

𝐿∗
𝑛(𝑥) = ∫

𝑥

0
𝐿𝑛(𝜉)𝑑𝜉, (56)

𝐿∗∗
𝑛 (𝑥) = ∫

𝑥

0

(

∫

𝜂

0
𝐿𝑛(𝜉)𝑑𝜉

)

𝑑𝜂, (57)

for 𝑥 ∈ [0, 𝐿].
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The finger joint is introduced into the model with additional equa-
tion:

𝑓𝑁(𝑁𝜀+3)+𝑁𝛾+𝑁𝜅+6+𝑖 = 𝑢𝑖𝑒FJ (0) − 𝑢𝑖𝑒FJ−1(𝐿𝑒FJ−1) −
𝑅𝑖
1,𝑒FJ

(0)

𝐾FJ
, (58)

where 𝑒FJ ∈ {1, 2,… , 𝑁𝑒𝑙} is the index of the element in which the
finger joint is located and 𝑖 ∈ {1, 2,… , 𝑁} is the index of the layer
where the finger joint is situated. 𝑁 and 𝑁𝑒𝑙 are the total number of
layers and finite elements, respectively. In this way, the continuity of
the kinematic field is ensured.

2.2. Solution of the discrete equations of a composite beam

The Eqs. (44) – (55) form the system of generalized equilibrium
equations of a 𝑁-layer composite beam considering interlayer slip and
the shear deformation of the layer while the presence of the finger
joint in the axial direction represents a constraining equation that
connects the two connecting elements at the level of the construction
of the numerical model of the beam. Therefore, in general, the system
consists of 𝑛𝑔 = 𝑁 𝑁𝜀 +𝑁𝛾 +𝑁𝜅 + 3𝑁 + 6 algebraic equations for the
same number of unknowns. The solution of the problem is obtained by
solving the equation:

𝐠(𝐮) − 𝜆𝐩 = 0, (59)

where 𝐮 is the vector of the unknown components of the nodal dis-
placements and rotations, i.e., external degrees of freedom, and 𝐩 is
the vector of the external load with load factor 𝜆. For the numerical
solution of Eq. (59), a well known Newton–Raphson iterative procedure
was used, in which the Eqs. (44) – (55) must be linearized [59,60].
Thus, the tangent stiffness matrix 𝐊𝐓 is obtained. If the determinant
of the tangent stiffness matrix is 0, the Newton–Raphson method does
not work and in the corresponding iteration the beam is considered to
have failed and maximum stress is reached.

3. Numerical examples

3.1. Verification of the numerical model

The verification of the numerical model was carried out on the
example of a four-layer, simply supported Euler–Bernoulli beam, taking
into account interlayer slip. The length of the beam was 400 cm and
the cross-section was 𝑏 = 10 cm and ℎ = 28 cm, as shown in Fig. 4. The
results of the proposed numerical model were compared with those of
Sousa and Silva [34] and Kroflič et al. [5], in which shear deformation
was neglected. For our model, which takes into account the shear
deformations of the layers, the shear modulus was considered to be very
high, i.e. 𝐺 = 105 kN/cm2. The geometry and material properties were
taken from Sousa and Silva [34], see Fig. 4. The beam was loaded with
a uniformly distributed load 𝑝𝑍 = 0.1 kN/cm2. The results of the four-
layer beam are also verified with the analytical solution obtained using
an analytical model similar to that of Fortuna et al. [63], but extended
to the four layers. The results and comparisons for the interlayer slips
at the left edge of the beam and for the vertical displacements at the
midspan of the beam are given in Table 1 in numerical form for differ-
ent numbers of elements 𝑁𝑒𝑙 and different degrees of interpolation. For
the calculations with the numerical model, the Lobatto interpolation
method (𝐿) was used. For example, the 2𝐿4 means that the calculation
with two finite elements was performed with the Lobatto interpolation
method with fourth degree of interpolation. The results of the analytical
model can also be found in Table 1. For each of the 𝑁𝑒𝑙 the error
of the numerical model is calculated in relation to the results of the
analytical model and the results of Kroflič [5] and Sousa and Silva [34].
The error is calculated according to the simple expression: Error =
(𝑠N − 𝑠M)∕𝑠M 100%), where 𝑠N represents the numerical solution and 𝑠M
represents the reference solution, where letter M stands for reference

solutions obtained by analytical model (M=A), Kroflič et al. [5] model
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Fig. 4. The two models of a four- and two-layer, simply supported glued laminated beam with interlayer slip for the verification of the numerical model.
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M=K) or Sousa and Silva [34] model (M=S). When comparing with
he literature, the numerical model presented agreed most with that of
ousa and Silva [34]. It can be seen that the majority of the results
gree at least up to the 6th decimal place.

An additional verification of the numerical model was also carried
ut on the example of a two-layer Timoshenko–Ehrenfest composite
eam analysed by Schnabl et al. [49], where the rotations 𝜑𝑖, pseu-
ocurvatures 𝜅𝑖 and shear strains 𝛾 𝑖 are considered to be different for
he layers 𝑖 and where interlayer slip was also taken into account. The
ength of the beam was 𝐿 = 250 cm with a cross-section of 𝑏 × ℎ =
30 × 50 cm. The bottom layer has a thickness of 30 cm and a shear
modulus 𝐺 = 120 kN/cm2, while the top layer has a shear modulus
f 𝐺 = 80 kN/cm2. The modulus of elasticity was the same for both
ayers, 𝐸 = 1200 kN/cm2. The beam was loaded with a uniform load
Z = 0.5 kN/cm. The verification was done with finger joint at the
idspan with very high stiffness (𝐾FJ = 1015 kN/cm2), so the results

are comparable to those by Schnabl et al. [49], but not necessarily
the same. The formulation by Schnabl et al. [49] is different than that
presented in this paper because the vertical displacements, rotations
and shear deformations were not considered to be the same for all
layers as is the case in this formulation. Consequently, the results are
slightly different, as can be seen in Table 1, where (N2) denotes the
numerical solution for the two-layer beam and (S2) denotes the solution
for the two-layer beam according to Schnabl [49].

For the example of four-layer beam the horizontal slips 𝛥𝑗
X of all

three interlayer contacts 𝑗 = {1, 2, 3} are shown graphically in Fig. 5.
The results of all three models presented agree well. A small deviation
of the values can be seen for the lowest interlayer contact 𝑗 = 1. This
could be due to the fact that we assumed the same shear modulus
𝐺 as Kroflič et al. [5] where delamination between layers was also
considered and the author had to assume a high contact stiffness
perpendicular to the layers, 𝐾Z ≫ 0. Since our model does not take
delamination into account this assumption was not considered.

3.2. Validation of the numerical model

In order to validate the results calculated with the presented numer-
ical model, experimental tests were carried out. Four glued laminated
beams were tested using a four-point bending test setup according to
the requirements of the standard EN 408 [64]. The beams were made
7

of Slovenian beech wood. The length of the beams was 360 cm. The
Fig. 5. The comparison of the interlayer slips 𝛥𝑗
X of the four-layer glued laminated

beam calculated with the numerical model with the results from the literature [5,34].

cross-section of the beams was rectangular with a height ℎ = 18 cm
nd a width 𝑏 = 10 cm and each beam had 10 layers. The schematic
epresentation of the beams can be found in Fig. 6. Three of the
eams had finger joints in the bottom layer at the midspan region
here the maximum bending moment occurs, while the bottom layer
f Beam 1 was free of finger joints at the midspan. All the mechanical
roperties of the material of the glued laminated beams required for
he numerical model were measured before testing and are shown in
able 2. The modulus of elasticity 𝐸𝑖

𝑡 of the layers denoted by 𝑖, where
= {1, 2,… , 10}, was determined by nondestructive testing with the

TIG strength grading machine, presented in the work of Fortuna et al.
3,65]. The shear modulus of the beam, 𝐺, was measured during the

experimental bending test according to the EN 408 [64]. The stiffness
of the interlayer contact, 𝐾X, was also determined during the beam
bending tests, while tensile tests for the finger joints were performed
to determine the stiffness of the finger joints, 𝐾FJ, needed as input
data for the numerical model and its validation. The stiffness, 𝐾FJ,

as determined based on the measurements of the tensile modulus of
lasticity of the finger joints, 𝐸𝑡,FJ. Since our model is a planar model
here the finger joints are considered as axial springs, the stiffness of

he finger joints is calculated here according to Eq. (60):

FJ =
𝑏 ℎ𝑖 . (60)
𝑙FJ 𝐸𝑡,FJ
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Table 1
Interlayer slips 𝛥𝑗

𝑋 and vertical displacements at the midspan of the four-layer Timoshenko–Ehrenfest and two-layer Euler–Bernoulli beam, calculated with the proposed numerical
models and their comparison with the analytical results [63] and other numerical models [5,34,49], where 𝐿𝑘 denotes the Lobatto method and 𝑘 the degree of interpolation.

Quantity Description Reference Number of elements and type of interpolation

solution 2𝐿2 10𝐿2 12𝐿2 4𝐿3 2𝐿4

[cm] Four-layer beam (Fig. 4)

𝛥1
𝑋 (0)

Numerical model (N) 0.149203 0.149300 0.149301 0.149301 0.149301
Analytical model (A) [63] 0.149301
Kroflič et. al. (K) [5] 0.158872
Sousa and Silva (S) [34] 0.149301
Error N vs. A [%] 0.0656 0.0067 0 0 0
Error N vs. S [%] 0.0656 0.0067 0 0 0
Error N vs. K [%] 6.0860 6.0250 6.0244 6.0244 6.0244

𝛥2
𝑋 (0)

Numerical model (N) 0.214215 0.214333 0.214333 0.214333 0.214333
Analytical model (A) [63] 0.214333
Kroflič et. al. (K) [5] 0.215143
Sousa and Silva (S) [34] 0.214333
Error N vs. A [%] 0.0551 0 0 0 0
Error N vs. S [%] 0.0551 0 0 0 0
Error N vs. K [%] 0.4313 0.37649 0.037649 0.037649 0.037649

𝛥3
𝑋 (0)

Numerical model (N) 0.270728 0.270895 0.270896 0.270896 0.270896
Analytical model (A) [63] 0.270896
Kroflič et. al. (K) [5] 0.269841
Sousa and Silva (S) [34] 0.270896
Error N vs. A [%] 0.0620 0.0004 0 0 0
Error N vs. S [%] 0.0620 0.0004 0 0 0
Error N vs. K [%] −0.3287 −0.3906 −0.39097 −0.39097 −0.39097

𝑤 (𝐿/2)

Numerical model (N) 3.831362 3.828018 3.828014 3.828014 3.828014
Analytical model (A) [63] 3.828015
Kroflič et. al. (K) [5] 3.835192
Sousa and Silva (S) [34] 3.827935
Error N vs. A [%] −0.0874 −0.0001 0 0 0
Error N vs. S [%] −0.0895 −0.00217 −0.0021 −0.021 −0.021
Error N vs. K [%] 0.0999 0.1871 0.1872 1.872 1.872

Two-layer beam

𝛥𝑋 (0)
Numerical model (N2) 0.076541 0.076544 0.076544 0.076544 0.076544
Schnabl et. al.(S2) [49] 0.077293
Error N2 vs. S2 [%] −0.9725 −0.9692 −0.9692 −0.9692 −0.9692

𝑤 (𝐿/2)
Numerical model (N2) 0.270066 0.270053 0.270053 0.270053 0.270053
Schnabl et. al.(S2) [49] 0.271026
Error N2 vs. S2 [%] −0.3543 −0.3592 −0.3592 −0.3592 −0.3592
Fig. 6. One of the four simply supported ten-layer glued laminated beam with finger joints loaded with concentrated load and experimentally tested in bending.
The average value of the measured modulus of elasticity in tension of
all finger joints, 𝐸𝑡,FJ = 1242 kN/cm2, was taken into account for each
of the finger joints. Each layer had approximately two finger joints. The
positions of the finger joints, 𝑥FJ, were measured from the left edge of
the beam and are given in Table 3 for each layer. This gave us all the
input data we needed for the simulations with the numerical model.

During the experimental bending test, the applied load and the
vertical displacements were monitored. The comparison between the
experimentally measured and the numerically calculated responses of
the four beams is shown with numerical values in Table 4 and graph-
ically in Fig. 7. It can be observed that the measured and calculated
results agree quite well. It should be noted that no type of adjustment
or calibration was performed to obtain the results shown for Beams 2,
8

3 and 4. As can be seen from Fig. 7, these three beams show almost
linear-elastic behaviour. However, this was not the case for Beam 1,
i.e., the beam without finger joints in the bottom layer in the region
of maximum bending moments, i.e., maximum bending stresses. From
the experimentally measured responses for all beams, it appears that
failure occurred at a load of about 80 kN, resulting in a limiting stress
of 𝑓𝑙𝑖𝑚 = 80 kN/cm2. Therefore, we adjusted the constitutive material
law for Beam 1 so that the initial response was linear-elastic up to the
bending stress 𝑓𝑙𝑖𝑚. At higher stresses, the constitutive law became non-
linear. The contact between the layers was also modelled as non-linear.
Both constitutive laws are shown in Fig. 8. In this way we obtained the
results shown in Fig. 7 for Beam 1 and the agreement of the results was
increased (see Table 4).
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Fig. 7. The comparison of the results calculated with the numerical model (dashed line) and the results measured experimentally in bending tests (solid line) of the ten-layer
glued laminated beam.
Fig. 8. Nonlinear constitutive law for the interlayer contact between the layers (left) and the non-linear constitutive law for the layers (right) as input data for non-linear numerical
model of Beam 1.
3.3. Robustness of the numerical model

The results of the verification of the numerical model (Table 1)
show that the output of the model is influenced by the number of finite
elements (𝑁el) used in the model and the complexity of the interpola-
tion, i.e., the degree of interpolation (d.o.i.). Thus, the robustness of
the model is investigated in terms of convergence and the sensitivity of
the model, i.e., the effect of the extreme values of the input data on the
results of the model. As mentioned earlier, similar finite elements were
presented by Schnabl et al. [49], where the performance of the finite
elements of the two-layer Timoshenko–Ehrenfest beam was analysed.
They showed rapid convergence of results and also no problems with
shear or slip locking. The type of finite elements presented in this paper
is somewhat more complex and has more layers with the presence
of finger joints. However, in this formulation, it is assumed that the
vertical displacements, rotations and shear deformations are the same
for all layers. This could affect the robustness of the model. In this
part, the influence of the number of elements 𝑁el, the interpolation
method and the degree of interpolation on the robustness of the finite
elements is further investigated. Table 5 shows the convergence of the
model of the ten-layer beam with a finger joint at the midspan. The
9

geometry of the beam is similar to the one used for the validation of
the model, with a length 𝐿 = 360 cm, a width 𝑏 = 10 cm and a height
ℎ = 18 cm (Fig. 9). The interlayer stiffness was 𝐾X = 15 kN/cm2. The
material properties were the same for all ten layers, i.e., modulus of
elasticity 𝐸 = 1800 kN/cm2 and shear modulus was 𝐺 = 150 kN/cm2.
The results were obtained using two different methods to calculate the
interpolation points: Equidistant (E) and Lobatto (L) method. As can
be seen from the derivation of our numerical model, the finger joints
determine the meshing of the model, so for one finger joint in the
model at least two finite elements are needed (𝑁el = 2). The results are
shown for different d.o.i. of Lagrangian polynomials to approximate of
the unknown quantities and then compared with the reference solution
calculated with 100 finite elements of the same length. The method
of interpolation and integration for the reference solution was not
significant, as the results for both methods were identical up to the
seventh significant figure. As can be seen in Table 5, the convergence
of the results depends on the stiffness of the finger joint. If the stiffness
of the finger joint is very high (𝐾FJ = 1015 kN/cm2), we were able to
obtain the correct results in bold already with only two finite elements,
while for a very low stiffness of the finger joints (𝐾FJ = 10−3 kN/cm2)
more finite elements with a higher degree of interpolation (d.o.i.) were
needed. Interpolation with Lobatto points gives slightly better results

than those with Equidistant points.
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Fig. 9. Model of a simply supported ten-layer glued laminated beam with finger joints at the midspan loaded with uniform distributed load.
Table 2
Mechanical properties of the laminations of the glued laminated beams as input data
for the numerical models of the four glued laminated beams experimentally tested in
bending.

Property Mechanical properties [kN∕cm]2

Beam 1 Beam 2 Beam 3 Beam 4

𝐸10
𝑡 18 500 20 800 17 500 17 100

𝐸9
𝑡 18 000 17 800 20 200 17 000

𝐸8
𝑡 18 800 20 300 19 400 18 500

𝐸7
𝑡 14 400 17 300 20 300 18 900

𝐸6
𝑡 19 300 16 600 19 000 22 100

𝐸5
𝑡 16 300 17 600 14 900 21 200

𝐸4
𝑡 19 200 20 300 18 100 17 900

𝐸3
𝑡 19 700 15 200 20 200 18 700

𝐸2
𝑡 20 600 18 100 20 000 18 100

𝐸1
𝑡 21 000 21 100 20 700 20 700

𝐺 64.0 62.0 94.0 98.0

𝐾X 160.0 157.0 243.0 156.0

𝐾FJ 5590 5590 5590 5590

Table 3
Positions of the finger joints 𝑥𝑖FJ for layers 𝑖 = (1, 2,… , 10) measured from the left edge
of the beam as an input data for the numerical models of the four glued laminated
beams experimentally tested in bending.

Property Positions of finger joints [cm]

Beam 1 Beam 2 Beam 3 Beam 4

𝑥10FJ 165 41, 184 57, 186 34, 190

𝑥9FJ 186 63, 160 30, 342 159

𝑥8FJ 111, 239 105, 343 136, 279 90

𝑥7FJ 174, 341 156, 256 81, 223 19, 162

𝑥6FJ 111, 287 270, 358 50, 192, 306 127, 254

𝑥5FJ 296 180, 308 165 79

𝑥4FJ 97 113, 226 104, 232 38, 166, 294

𝑥3FJ 347 133, 271 140, 232 171, 267

𝑥2FJ 351 87, 225 192 129, 283

𝑥1FJ 301 68, 275 165, 307 132, 275

If one compares the results with those in the work of Schnabl et al.
[49], it can be seen that in our case the convergence is somewhat
slower. Therefore, an additional verification was made for the same
model of a two-layer beam as reported by Schnabl et al. [14]. The
results, presented in Table 6, show that the reference solution is already
reached with the 3rd degree Lobatto interpolation, which is faster
compared to the results of the model of the ten-layer beam. Thus, the
complexity of the model (especially in terms of the number of layers)
could be considered as one of the factors affecting the convergence of
10
Table 4
Values measured experimentally in bending tests and values calculated with the
numerical model for the maximum vertical displacements at the midspan of the glued
laminated beams with finger joints.

Specimen 𝑁el Numerical (N) Measured (M) Error [%]
𝑤N(𝐿∕2) [cm] 𝑤M(𝐿∕2) [cm] 𝑤N (𝐿∕2)−𝑤M (𝐿∕2)

𝑤M (𝐿∕2)
100

Beam 1 (linear) 17 9.53 11.55 17.5
Beam 2 (linear) 24 6.96 6.92 −0.6
Beam 3 (linear) 22 7.05 7.85 10.2
Beam 4 (linear) 24 6.72 6.23 −7.9
Beam 1 (non-linear) 25 11.1 11.55 −4.3

the results. Nevertheless, the results have shown that accurate results
can be obtained with a small number of finite elements and a relatively
low degree of interpolation. This leads to fast and efficient calculations.

Another important advantage of the presented finite element for-
mulation is that finite elements do not exhibit problems regarding slip
locking. This is demonstrated using the example of simply supported
ten-layer beam, as shown in Fig. 9, with one finger joint in each
layer positioned at the midspan of the beam. The results are shown
in Fig. 10, where the interlayer slip between the lowest two layers is
shown for two cases with very low interlayer contact stiffness (𝐾X =
1.5 ⋅ 10−3 kN/cm2) and very high interlayer contact stiffness (𝐾X =
1.5⋅103 kN/cm2) using different methods of interpolation. Theoretically,
slip locking occurs at the extreme values of the interlayer contact
stiffness. Since Fig. 10 shows that the results remain stable regardless
of the value of the stiffness 𝐾X, it is proven that the finite elements are
not subject to the slip locking problem.

3.4. Parametric study

3.4.1. Influence of the shear modulus 𝐺
With the present model we can evaluate the influence of shear

modulus 𝐺 on the response of a multilayer beam with interlayer slip.
In the first parametric study, the vertical displacements at the midspan
of the beam are analysed for different values of the shear modulus
𝐺 of the ten-layer simply supported beam with the geometry already
shown in Fig. 9. The contact stiffness between the layers was assumed
to be 𝐾X = 150 kN/cm2. The vertical displacements at midspan 𝑤(𝐿∕2)
are plotted for four different shear moduli 𝐺, as shown in Fig. 11.
The results of the numerical model are as expected, for larger shear
modulus, the vertical displacements are smaller. For a very small value
of shear modulus 𝐺 = 1.5 kN/cm2, the vertical displacement was almost
3.5 times larger than the vertical displacement for the case with a very
large value of shear modulus 𝐺 = 15⋅104 kN/cm2. These values of shear
modulus are quite extreme values and were analysed to investigate the
sensitivity of the model to the shear locking problems. Since the results
are stable and show no oscillations, it can be concluded that the finite
elements are free from shear locking.
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Table 5
Comparison of numerical results for two and four elements with different degrees (d.o.i.) and types (t.o.i.) of interpolation to the reference
solution obtained with 100 elements and 10th degree of for the slip in the lower interlayer contact at the beginning of the ten-layer beam and
vertical displacement at the midspan of the ten-layer beam with finger joint at the midspan of each layer.
𝑁el d.o.i. t.o.i. 𝑤(𝐿∕2) [cm] 𝛥1

X(0) [cm] Error 𝑤(𝐿∕2) [%] Error 𝛥X(0) [%]

𝐾FJ = 1015

2 3 L 32.31938 −0.190808 −0.05 −4.03
E 32.31461 −0.189477 −0.06 −4.70

2 4 L 32.33837 −0.196388 0.01 −1.22
E 32.34325 −0.194721 0.03 −2.06

2 6 L 32.33451 −0.198707 0 −0.06
E 32.33562 −0.198107 0 −0.36

2 10 L 32.33436 −0.198819 0 0
E 32.33439 −0.198807 0 −0.01

4 3 L 32.33437 −0.197501 0 −0.66
E 32.33435 −0.196978 0 −0.93

4 4 L 32.33436 −0.198648 0 −0.09
E 32.33437 −0.198329 0 −0.25

4 5 L 32.33436 −0.198804 0 −0.01
E 32.33436 −0.198696 0 −0.06

4 10 L 32.33436 −0.198819 0 0
E 32.33436 −0.198819 0 0

Reference solution 32.33436 −0.198819 / /

𝐾FJ = 103

2 5 L 34.78062 −0.197979 0.01 −0.23
E 34.78686 −0.197203 0.03 −0.62

2 6 L 34.77792 −0.198304 0 −0.07
E 34.78441 −0.197508 0.02 −0.47

2 10 L 34.77682 −0.198439 0 0
E 34.77696 −0.198422 0 −0.01

Reference solution 34.77682 −0.198439 / /

𝐾FJ = 10−3

2 5 L 250.3163 −0.220419 1.77 4.60
E 259.2459 −0.251162 5.40 19.2

2 6 L 246.7966 −0.208846 0.34 −0.89
E 251.3316 −0.192304 2.18 −8.74

2 10 L 245.9662 −0.210717 0 0
E 245.9660 −0.210719 −0.01 0.001

4 10 L 245.9660 −0.210717 0 0

Reference solution 245.9660 −0.210717 / /
Table 6
Comparison of numerical results of the model of two-layer beam with interlayer slip for two elements with different degrees (d.o.i.) and types
(t.o.i.) of interpolation to the reference solution given by Schnabl et. al. [49] for the slip at the beginning of the ten-layer beam and vertical
displacement at the midspan of the two-layer beam.
𝑁el d.o.i. t.o.i 𝑤(𝐿∕2) [cm] 𝛥1

X(0) [cm] Error 𝑤(𝐿∕2) [%] Error 𝛥1
X(0) [%]

2 2 L 0.270066 −0.076541 0.005 −0.003
E 0.270066 −0.076541 0.005 −0.003

2 3 L 0.270053 −0.076544 0 0
E 0.270051 −0.076543 −0.001 −0.001

2 4 L 0.270053 −0.076544 0 0
E 0.270053 −0.076544 0 0

2 5 L 0.270053 −0.076544 0 0
E 0.270053 −0.076544 0 0

Ref. sol. (Schnabl et. al. [49]) 0.270053 −0.076544 / /
3.4.2. Influence of the number of layers and the interlayer contact stiffness
The study on the influence of the number of layers was carried out

on the model of a simply supported glued laminated beam with the
cross-section 𝑏 × ℎ = 20 × 30 cm. The length of the beam was 𝐿 =
400 cm. The modulus of elasticity was assumed to be 𝐸𝑡 = 1760 kN/cm2

and the shear modulus was assumed to be 𝐺 = 80 kN/cm2 for all layers.
In this case, the model had no finger joints. The number of layers varied
between 2 and 10. In all cases, the total height of the beam remained
11
the same (ℎ = 30 cm) and the thickness of all layers was the same,
so increasing the number of layers resulted in thinner layers. For the
parametric study, three different contact stiffness between the layers
were considered: 𝐾X = 50,100 and 150 kN/cm2. The Fig. 12 shows
the results for the interlayer slip in the lowest interlayer contact at the
end of the beam (𝛥𝑗=1

X (𝐿𝑏𝑒𝑎𝑚)). As the number of layers is increased, the
interlayer slip decreases. Intuitively, this means that the interlayer slip
becomes smaller when stiffness of the interlayer contact is increased.
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Fig. 10. Interlayer slip between the lower two layers along the length of a simply supported ten-layer beam with interlayer slip and finger joints at the midspan of the beam for
two different interlayer contact stiffness 𝐾X.
Fig. 11. Vertical displacement at the midspan of the ten-layer beam with interlayer
slip and finger joints at the midspan in all layers for four different values of the shear
modulus 𝐺 of the layers.

he influence of the number of layers is more pronounced when the
ontact stiffness between the layers is lower. Similar conclusions can
e drawn also for the vertical displacement at the midspan of the beam
(𝐿∕2). When the contact stiffness between the layers is lower, the
ertical displacement increases. This effect is more pronounced when
he number of layers is larger.

.4.3. Influence of the finger joint stiffness
The influence of the finger joint stiffness was investigated on the

en-layer glued laminated beam with a length of 𝐿 = 360 cm and a
prismatic cross-section. The geometry of the beam is similar to that
already shown in Fig. 6. In each of the lowest three layers of the Beam 2
there were two finger joints with the same positions 𝑥𝑖FJ, for 𝑖 = {1, 2, 3},
while the upper seven layers were considered to be finger joint free. As
can be seen from Fig. 13, the influence of finger joint stiffness is not
very pronounced. It is shown together with the influence of the material
modulus of elasticity in tension 𝐸𝑡. The stiffness of the finger joint is
recalculated here according to Eq. (60) and presented with the modulus
of elasticity of the finger joints 𝐸𝑡,FJ in order to be comparable with the
modulus of elasticity of the layers 𝐸𝑡.

The influence of 𝐸𝑡 gives a better overview of the influence of
finger joint stiffness, which is relatively small, although Fortuna et al.
[63] have shown that the influence of finger joint stiffness is very
pronounced for two-layer Euler–Bernoulli glued laminated beams. In
this case, however, we are dealing with a ten-layer beam where the
finger joint stiffness is not as important as in the two-layer beams. The
12

vertical displacement at the midspan of the beam depends mainly on
the stiffness of the material and the stiffness of the interlayer contact
𝐾X.

4. Conclusions

The formulation of a new type of finite element for the numerical
analysis of 𝑁-layer composite beams with interlayer sliding is pre-
sented, taking into account the shear deformation of the layers and
finger joints in the layers. The derivation of the finite element is based
on a planar beam theory for an arbitrary number of layers. For the
formulation of the strain-based finite elements, the modified principle
of virtual work was adopted. Based on the results of our research
presented in this work following conclusions can be drawn:

• Strain-based finite elements has proven to be a very effective and
robust type of finite element also for modelling 𝑁-layer composite
beams with finger joints.

• The analysis of different configurations of composite beams
showed the applicability of the finite elements. The numerical
model was validated with the results of experimental testing
of four ten-layer glued laminated beams. Without any kind of
calibration, the results of the numerical models agreed very well
with the results of the bending tests.

• The numerical model of the four-layer glued laminated beam,
which takes into account the interlayer slip, was verified by
comparing the results with those from the literature and with
the analytical solution. Again, the differences between the results
were minimal and were considered to be due to different assump-
tions or simplifications of the models, such as neglecting shear
deformations or delaminations, etc.

• Analysis of the convergence of the finite elements showed that
we were able to obtain accurate solutions with a small number
of elements and a relatively low degree of interpolation. The two
methods for calculating the interpolation points, the Equidistant
and the Lobatto points, are compared. It is found that the conver-
gence of the results with the Lobatto points is slightly better, but
the difference is very small.

• It was found that the convergence depends also on the complexity
of the model, i.e., the number of layers, the interlayer contact
stiffness and the stiffness of the finger joints.

• The performance of the finite elements was very stable and no
slip or shear locking was observed in our analysis, as the results
were stable and did not oscillate.

Thus, the presented finite elements are a practical tool for fast and accu-
rate calculations for use in various numerous applications in numerical
modelling of composite beams.
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Fig. 12. Dependence of the interlayer slip at the and of the beam (left) and vertical displacement at the midspan of the beam (right) on the number of layers.
Fig. 13. Influence of the moduli of elasticity in tension of the layers, 𝐸𝑡, and of the finger joints 𝐸𝑡,FJ, on the vertical displacement at the midspan 𝑤(𝐿∕2) of the ten-layer beam.
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