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Izvlecek
kompleksnih dinamiénih dvostranskih povratnih informacij med transportnimi modeli in modeli rabe
zemljis¢. Modeli LUTI ocenjujejo ve¢ scenarijev naértovanja, da bi prisli do najustreznejsih odlocitev.
Sprejemanje odlocitev na podlagi modelov, ki niso kalibrirani, je lahko zavajajoce in celo napacno.
Ceprav je kalibracija (ocena parametrov) kljuéna zahteva modelov LUTI, popolnoma avtomatizirani
pristopi z uporabo vecciljnih funkcij niso bili v celoti obravnavani in ni standardnega postopka za
kalibracijo modela LUTI. Modelarji namesto tega uporabljajo obicajne tehnike za kalibracijo
dolocenega elementa modela ali oceno skupine parametrov modela z malo ali brez skrbi za globalno
shemo.
Cilj doktorske disertacije je razvoj popolnoma avtomatiziranega pristopa globalne kalibracije z uporabo
vecciljnih funkcij. Za odpravo te omejitve je predlagan splosni pristop kalibracije za parametre modela
rabe zemljiS¢ z uporabo algoritma diferencialne evolucije (DE). Izvedena je bila globalna analiza
obcutljivosti za identifikacijo najpomembnejs$ih parametrov modela rabe zemljiS¢. Ti parametri so bili
nato kalibrirani z uporabo algoritma diferencialne evolucije s korensko povpre¢no kvadratno napako
(RMSE) in povprecno absolutno normalizirano napako (MANE) kot vecciljnimi funkcijami. Predlagana
tehnika (algoritem DE) ponuja pet klju¢nih zmogljivosti za kalibracijo modelov LUTIL vklju¢no z 1)
globalno oceno namesto lokalne ocene, 2) upostevanjem vecciljnih funkcij, 3) nenehnim izboljSevanjem
rezultatov, 4) enostavno prilagodljivim, in 5) vkljuCitev ve¢ parametrov v postopek kalibracije. Za
testiranje uc¢inkovitosti predlagane tehnike kalibracije je bil uporabljen model rabe zemljis¢ TRANUS.
Validacijo in konsolidacijo pristopa smo testirali na podlagi konvergence, minimiziranja napak in
razmerja med modeliranimi in opazovanimi podatki s primerjavo z dvema dobro znanima
optimizacijskima tehnikama, genetskim algoritmom (GA) in optimizacijo roja delcev (PSO). Nasi
poskusi kazejo, da je z uporabo algoritma Deferential Evaluation predlagani pristop presegel tehnike

GA in PSO ter zagotovil najbolj stabilne in raznolike reSitve.
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Abstract
LUTI (Land Use and Transportation Interaction) models are decision-making aid tools to simulate
complex dynamic bilateral feedback between transportation and land-use models within a territory.
LUTI models appraise several further planning scenarios to arrive at the most appropriate decisions.
Making decisions based on the models that are not calibrated or calibrated properly might be misleading
and even incorrect. Although calibration (parameter estimation) is a crucial requirement of LUTI
models, fully automated approaches using multi-objective functions have not been fully addressed.
There is no standard procedure for LUTI model calibration. Modelers instead use conventional
techniques to calibrate a specific element of a model or estimate a group of model parameters with little
or no concern for a global scheme.
This thesis aims to develop a fully automated global calibration approach using multi-objective
functions. In order to overcome this constraint, a novel calibration methodology is introduced for the
parameters of the land-use model, using a Differential Evolution (DE) algorithm. A global sensitivity
analysis was performed to identify the most critical land-use model parameters. These parameters were
then calibrated using the differential evolution algorithm with the Root Mean Square Error (RMSE) and
Mean Absolute Normalized Error (MANE) as standard statistical metrics to measure the goodness of
the proposed calibration approach. The proposed technique (DE algorithm) offers five critical
capabilities for calibrating LUTI models: 1) global estimation, prioritizing over local estimation, 2)
accommodating multi-objective functions, 3) continuously enhancing results, 4) easy adaptability, and
5) incorporation of multiple parameters in the calibration process. The performance of the proposed
calibration technique was assessed using the TRANUS land-use model. The approach was validated and
consolidated, evaluating convergence, error minimization, and the ratio between modeled and observed
data. These assessments involved comparisons with two established optimization techniques: Genetic
Algorithm (GA) and Particle Swarm Optimization (PSO). Our experiments indicate that employing the
Differential Evaluation algorithm resulted in the proposed approach outperforming both GA and PSO
techniques. The Differential Evaluation algorithm provided superior performance and demonstrated

excellent stability and diversity in solutions.
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1

1.1

INTRODUCTION

Land use and transportation interaction are fundamental concepts in the study of land development
and the formulation of transport interconnections. In most scenarios, land use and transport planning
are conducted separately, which means that the effect of any change in transportation policies on
land use patterns is frequently ignored. Urban sprawl is one of the consequences of neglecting such
bilateral impacts in the planning process [1] and may lead to further incorrect assessments in
decision-making.

LUTI (Land Use and Transportation Interaction) models are designed to predict the interrelations
between economic growth and transport demand and vice versa (for more information, see [1]).
LUTI models have been used to examine the impact of transport and land-use policies, such as the
implementation of transportation infrastructures (e.g., Highway development, underground
systems), dwelling and business improvements, improvement of public transport and fare changes,
the expenses of private transport and the development of socio-demographic and economic
scenarios as well [2]. According to Hunt et al. [3], such models must be integrated comprehensively
and operative. These three elements indicate that the model should (1) adequately reflect the
connections between transportation and land use, and contrariwise, it should also (2) simulate
dwelling and professional location preferences to compensate for a wide range of spatial
phenomena, particularly the development of land use (comprehensiveness), and finally, (3) there

should be at least a single application for policy analysis of a metropolitan region.

Motivation

The evolution of urban land use and transportation infrastructure management has historically
shaped city development. Numerous studies in the previous century have centered on these
interconnected aspects, particularly emphasizing their relationships. LUTI (Land-Use and
Transportation Integrated) models portray the multifaceted connections between land use patterns
and the supply and demand of transportation within a region. They are primarily used to assess
several alternative planning scenarios by modeling their likely implications on land use and
transport patterns. LUTI models attracted the attention of researchers since the 1950s; researchers
interested in modeling the complicated economic relationships in the urban area have turned to
LUTI modeling; a comprehensive review of the evolution and history of LUTIs by Wegener can be
found here [1]. LUTI models are multidisciplinary and incorporate econometrics, demographics, and
transportation engineering. The models serve as the foundation for several simulation applications.
Simulation findings must match real-world observations to be used as a framework for theoretical
investigations of real-world assessment and prediction. The goal of LUTI simulations is to forecast
the evolution of an urban region over a several-year timeframe, using presumptions in scenarios or

strategies explored in particular research. Finally, the purpose is to analyze these strategies or
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techniques and choose the optimal alternative based on the simulation findings. LUTI models, like
any other simulation model, include several parameters that reflect the properties and performance
of its elements and their interconnections. Because they depend on both presumptions and accuracy
of the information, like any other numerical model, they are fundamentally unreliable, and no
scientific principle is available that guarantees the LUTI model's reliability. As a result, there are no
impartial models or objective standards that can be used to determine if one configuration is better
than the other [4], [5][6].

Furthermore, while these models will not be able to "meet all basic scientific standards" and be
utilized for theory testing, they will be able to produce "robust but contingent knowledge" [7]. In this
regard, calibration and validation should be considered. Several model calibration stages are
required to guarantee that the proposed approach is a satisfactory approximation of reality under

particular criteria described in the analyzed scenario, particularly for long-term forecasts[8].

1.2 Research Objectives and Hypothesis

Despite LUTI models being more widely used, their adoption is being restricted due to a lack of
trust in their outcomes. It is not easy to make trustworthy projections with such complexity and
scale. As a result, calibration and validation procedures are at the forefront of contemporary LUTI
research. It requires estimating numerous parameters to set up LUTI models that can accurately
duplicate the target region's actual data. Due to the lack of a global estimating procedure, most
current LUTI calibration techniques are semi-automated and rely on single-objective functions and
local estimation techniques. An Automatic and Global calibration approach is a highly desirable
goal. Although the studies reviewed in the pieces show significant and influential efforts toward this
end, as the main objective, this research aims to develop an Automatic and Global Calibration
Approach for the LUTI models using a Multi-Objective Optimization Technique. To do so, the
Differential Evolution (DE) algorithm, which was developed by Storn and Price [9], one of the most
potent Evolutionary Algorithms (EAs), has been selected as an optimization technique, and the Root
Mean Square Error (RMSE) and Mean Absolute Normalized Error (MANE) have been employed
as standard statistical metrics to measure the goodness of the proposed calibration approach. DE
was used because of its simplicity in terms of programming, fast convergence, global estimation,
and the ability to find optimum solutions in almost every iteration. The land-use and activity model
of TRANUS [10], [11] (one of the well-known open-source LUTI models) has been selected to test
the suggested calibration technique. TRANUS is a standard structure for modeling sustainable land
use and transportation at both the urban and regional scales. Two sub-modules are combined in
TRANUS. (1) a land use and activity module that simulates a spatial economic system by analyzing
activity locations and economic sector relationships, and (2) a transportation module that estimates

the utilization of the transportation network and related disutility. Improving the TRANUS land-use
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module by calibrating the involved parameters is a sub-goal of this thesis. Therefore, only the land
use and activity module of the TRANUS are considered in the calibration process.
In this research, the following hypothesis will be tested:

e Using the Differential Evolution (DE) algorithm would improve the calibration of

LUTI models.

1.3  Overview of the Dissertation

Beginning with a comprehensive literature assessment of LUTI models and current calibration
procedures, this investigation set out to accomplish its goals. Section 2 provides an overview of LUTI
models, their applications, current calibration techniques, optimization methods, and a detailed
examination of the chosen algorithm (DE) and the target LUTI model, TRANUS.

Section 3 outlines the methodology employed for achieving an Automatic and Global calibration
approach. The mathematical foundation of the TRANUS land use and activity model, pertinent to this
study, is elucidated. Subsequently, a sensitivity analysis employing Sobol indices is conducted to
identify the most influential parameters of the target model. Objective (cost) functions are defined using
Mean Absolute Normalized Error (MANE) and Root Mean Square Error (RMSE) as error metrics.
Continuing in Section 3, the calibration and optimization techniques employed in this study, including
DE, GA, PSO, and Hybrid (GADE and PSODE), are customized based on the scenario provided by the
TRANUS model. The economic parameters, identified through sensitivity analysis and shadow prices,
are then calibrated using the specified optimization methods.

Section 4 presents the calibration results of the case study and discusses and compares the techniques
utilized. Section 5 shows the dissertation's conclusion with a summary of limitations and suggests

potential avenues for future studies.
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2 BACKGROUND

Land Use and Transportation Interaction models are computational frameworks designed to integrate
both land use and transportation systems, enabling the analysis of their dynamic interrelationships.
These models aim to simulate the impact of alterations in land use patterns on transportation demand
and, conversely, how transportation infrastructure influences decisions regarding land use. Typically,
LUTI models employ mathematical, statistical, and simulation techniques to investigate the complex
interactions between land use and transportation systems. They draw upon diverse datasets, including
census records, land use maps, transportation network data, and various spatial-temporal datasets.

Widely applied in urban and transportation planning, LUTI models serve as valuable instruments for
policymakers and planners. They facilitate the evaluation of potential consequences stemming from
diverse land use and transportation scenarios. For instance, these models enable an assessment of how
new transportation infrastructure projects, such as highways or public transit systems, might impact

cities' spatial organization and their inhabitants' travel behavior.

2.1 LUTI models

This section focuses on the calibration of LUTI models and provides an overview encompassing their
historical evolution, diverse applications, and contemporary calibration techniques. LUTI models stand
as an integration platform, combining theory, data, and algorithms to capture the intricate interaction
between the foundational components of urban areas: the transportation and land use subsystems. [12].
Land-use models are used to forecast demographic and economic indicators for land-based activities.
These measurements characterize a particular metropolitan area's population (typically in terms of
income and employment) and built-space environment (e.g., floor space). Predicting traffic patterns on
a transportation network is done with the use of travel models. This class of models seeks to replicate
travel patterns as a function of human activities (typically in terms of land uses) as well as transportation
network features (commonly considered in terms of accessibility). Integrated land use and transportation
models simulate the interactions of land use and transportation systems. In general, feedback methods

are used to replicate this interaction.

Mode
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Figure 2-1: Feedback cycle between travel activities and land use [1]
Slika 2-1: Ciklus povratnih informacij med potovalnimi dejavnostmi in rabo zemlje
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As illustrated in Figure 2-1, The feedback loop in LUTI models allows for considering the impacts of
transportation policies on land use patterns and vice versa. For example, a new transportation
infrastructure project, such as a new metro line, can influence the location and density of land uses along
the route. In contrast, changes in land use policies, such as the introduction of zoning regulations, can
affect travel patterns by changing the accessibility and connectivity of different city areas.

Many models are already accessible for simulation and planning exercises, and several writers have
proposed categories that bring together distinct models based on various characteristics. Wegener[1]
employed nine critical criteria to classify more than 20 models published in the literature:
comprehensibility, structure, theoretical foundation, methodologies used, dynamics, data necessary,
calibration, operationality, and application. Waddell and Ulfarsson [13] developed a LUTI classification
based on the theoretical approaches established in LUTI modeling over the previous 50 years. Figure
2-2 represents a classification of LUTI models discovered in the literature according to the historical
evolution of the main theoretical modeling paradigms. It is based on their core hypothetical nucleus and

the temporal generation to which they belong.
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Figure 2-2: Chronological development of LUTI models [14]
Slika 2-2: Kronoloski razvoj modelov LUTI

Based on this historical development and generation discovered, the following classifications are
presented by Coppola et al. [15]:
1. Models introduced in the 1960s and 1970s are known as first-generation models. According to

their theoretical foundation for running simulations, they may be split into three categories.
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a. Lowry [16] established an interaction model for modeling population and economic
activity areas, backed by economy foundation theory [17]. The theory of spatial interaction
or Wilson's extension of statistical mechanics is the foundation for spatial and gravity
models [18].

b. Optimization-based mathematical programming models. This approach minimizes or
maximizes a specific objective to simulate agent behavior. Herbert and Stevens (1960)
created the standard model of this kind, which approximated the behavior of the residential
location market based on Alonso's theory of aggregated rent maximization. TOPAZ
(Technique for Optimal Placement of Activities into Zones) is another example of this
model, which calculated activity placements based on transportation cost reduction and
urban growth [19].

c. INPUT/OUTPUT matrices-based models This model replicates the metropolitan or regional
economy by utilizing the input/output matrix approach created from the work of [20].
MEPLAN is an excellent example of this sort of paradigm. [21], [22].

2. In the 1980s and 1990s, second-generation models debuted. These models are based on
McFadden's work on random utility theory [23]. This generic type may be subdivided further
into a simulation of land markets based on [24]. Another example of the second-generation
modes developed by Martinez[25] is the Santiago Land use mode “MUSSA.”

3. Models from the third generation first arrived in the second part of the 1990s. These are highly
disaggregated models, often called microsimulation models in some circumstances [14]. They
are dynamic, meaning the answer to their simulations does not attain total market equilibrium.
URBANSIM, created by Waddell and associates at the University of Washington, is one of the
more well-known and commonly used models [13][26].

It is vital to remember that the three generations of models are still being researched, and none has been
able to replace the others completely. Random utility theory is the most often utilized paradigm in site
choice modeling for various urban actors. Even though numerous studies have proven that both
techniques may yield identical findings under specific assumptions, this theory has essentially
supplanted spatial interaction theory-based location models, which provided a more limited behavioral
foundation [24].

LUTI models have been challenged in the realm of transport subsystem simulation because they employ
approaches that are somewhat out of date. Many LUTI models still use the traditional four-stage
sequential method, prompting some authors to advocate for adopting more current models that can be
endogenous or exogenous to the rest of the LUTI simulator [27].

The primary purpose of Land Use and Transport Interaction (LUTI) models is to describe the complex
interplay between land use and transportation in urban contexts. Models exclusive to a sector, such as
those for transportation systems or urban development, cannot consider this relationship and, as a result,

leave out an essential aspect of the tale. The goal of LUTI models is to close this gap and, in the end,
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provide better decision-making tools for long-term planning in cities and regions. The first LUTI models
came in the 1960s. The LUTI models' complexity, along with the computing constraints of the time, put
a halt to their progress. However, interest in LUTI models revived in the 1960s, and their quantity and
complexity have gradually increased. This area also makes extensive use of micro-simulation. While
spatial economics models may be more technically challenging to manage owing to the necessity of
finding an equilibrium for a complicated collection of parameters and equations, activity-based models
often have more parameters and more significant data requirements for instantiation. Aside from these
distinctions, all LUTI models have various conditions, including, as with most models in general, the
necessity for calibration (parameter estimation) techniques to instantiate them and validation ways to

explain their operational capacity.

2.1.1 TRANUS

Tomas de la Barra [10] designed TRANUS, an op-source, widely used LUTI model. The TRANUS
model is a widely used LUTI model. It incorporates various modules representing transportation
systems, land use patterns, and economic factors. The model allows for analyzing land use and
transportation interactions and can support urban planning and policy decision-making.

Two modules are connected and act as an input-output model in TRANUS. The activity model, which
represents the interactions of numerous economic sectors during a specific period, simulates the spatial
financial system. These interactions result in a demand for transportation, which is then sent into the
network via the transportation module. It is specifically developed to simulate the likely consequences
of various projects and policies in cities and regions and evaluate the outcomes from socioeconomic,
budgetary, and environmental perspectives. The most valuable feature of the TRANUS system is the
method in which all components of the urban or regional system, such as activity location, land use, and

transportation, are tightly integrated.

2.1.2 Theory and Structure

TRANUS provides a platform to evaluate and model the integration of land use and transportation
models. It can be applied on a local, regional, or national level. The study area is separated into spatial
zones and economic sectors, with the essential notions of the original input-output model modified and
given a spatial dimension. It is a macroeconomic equilibrium type model that combines two modules:
(1) Land use and activity module to simulate a spatial economic system by analyzing activity locations
and economic sectors relationships, and (2) Transportation module to calculate the usage of the
transportation network as well as the related disutility. The two modules of TRANUS use random utility
theory, e.g., discrete choice logit models for the designation of activities and land use, such as activity-
location, land-choice, multi-modal path choice, and assignment. Each module is then run again until all

regions' production and consumption needs are satisfied and equilibrium is reached. [28]. Significant
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theoretical developments have been produced in activity location interaction and transportation in the
last several decades. Several formal theories utilizing quantitative approaches have improved the
comprehension of urban and regional systems.

Figure 2-3 depicts the essential components of both modules. Within the land use and activity module,
the spatial economic system is simulated by modeling the locations of activities and the relationships
between economic sectors during a specific period. Conversely, the transportation module distributes
and allocates the travel demand generated by the activity model to the transport supply. Both modules
are integrated as an input-output model. Economic and geographical connections between activities,
transportation, and the real estate market result in people and freight movements. In turn, the
accessibility provided by the transportation system impacts the location and interaction of activities, as
well as land rent. The land-use module must establish an equilibrium between supply and demand and
the balance between the paid amount and the generating cost of each economic sector. The transportation
module receives the transport demand as input and equilibrates the transport system to meet that need.

Both modules are run continuously since a general equilibrium state is reached.

ACTIVITIES

TRANSPORT / LAND USE
INTERACTION

TRANSPORT

Figure 2-3: Fundamental Principle of TRANUS LUTI model [29]
Slika 2-3: Temeljni princip modela TRANUS LUTI

To calculate the costs and disabilities of transportation that will impact the activity model during the
subsequent simulation times, the model first converts economic flows into transport flows before
simulating a system of feedback loops to calculate the costs and disutility of transportation. According
to the circle depicted in Figure 2-3, transportation and land use in Tranus will interact and have an
integrated impact on one another. The initial input-output model in Tranus has been generalized to all
sectors involved in urban dynamics, including land, activities, people, and transportation. As a result,

the spatial component has been introduced and integrated with the transportation system [30].
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2.1.3 Land Use and the Activity Module

The land use and activity module calculates the outputs and consumptions for a zone during a particular
time and the flow demands generated by this activity. The transportation module receives these flow
needs. The transportation network then allocates travel flows to the network based on travel demand
when the associated trips are produced. In turn, the accessibility provided by the transportation system
affects the location and interaction of activities via transportation disutility, which also impacts the land.
The standard framework of the input-output model is used as a starting point, with final demand,
intermediate demand, and main inputs. The destination of output, which often includes private
consumption, government consumption, exports, and investment, is known as the final demand. The
economic system must create the amounts necessary in each sector, necessitating intermediate inputs.
These intermediate inputs, in turn, need other inputs, resulting in a lengthy cycle of production and
consumption. Primary inputs and intermediate information are necessary and often include salaries,
earnings taxes, and imports. Total output in the economic system equals the sum of all final and
intermediate demand. Total production also equals the sum of all medium and main inputs [31].

It is necessary to distinguish between two different kinds of economic sectors: (1) transportable sectors
and (2) non-transportable sectors. The critical distinction is that transportable sectors may be created
and consumed in several locations, but non-transportable sectors can only be consumed where they are
generated. For example, coal production in several places may fulfill the steel industry's requirement for
coal. Land or structures that must be consumed wherever they are produced could be the most common
non-transportable sectors. Non-transportable sectors, such as homes and net gross floor spaces, usually
connect to real estate. Transportable sectors might include all types of employment and inhabitants.
Explanations and details can be found in [11], [32].

As a result, transportable sectors produce flows, whether of commodities, services, or people. Transport
infrastructure must be present for such movements to be viable, which adds transportation expenses to
production costs. Non-transportable industries do not produce flows and do not utilize transportation.
Typically, economic sectors are divided into three categories: land or floor space, households, and
industries. The land is often divided into two or three types of residential floorspace (e.g., detached
houses, flats, and mobile homes) and commercial floorspace (e.g., offices and markets). Households are
often categorized by socioeconomic status, which is determined by income or the household structure.
Industries (e.g., main products are for export), services (schools, colleges, institutions), and commerce
are examples of business sectors.

Several parameters and functions represent the behavior of the various economic factors and their
equilibrium achievement. Elasticity parameters (J), sector weight, dispersion parameters (f), initial
attractor of each zone, attractor factors concerning sectors, and transport disabilities (4) are the main
parameters involved in the TRANUS models. A global sensitivity analysis is performed for these

parameters during the development of the proposed calibration approach in this thesis.
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A set of characteristics and expressions that are found in TRANUS mathematical equations are presented
here:
Exogenous Production: In the conventional input-output paradigm, the production not induced
by internal consumption equals final demand. Because the location of this production is
independent of other factors in the study region, it may be supplied to the model or allocated
using spatial distribution functions.
Induced Production: Production created inside the study area for consumption by internal or
external sectors. The industries that require it dictate the growth and placement of induced
production.
Exogenous demand: The exogenous request is assigned to zones with induced order.
Induced Demand: Final or intermediate demand drives production.
Consumption Cost: It denotes the unit cost of a consuming sector. It is determined by the
product price or expense in the production zone and the unit cost of transportation from the
production zone to the consuming area.
Production Cost: A sector's unit cost of production in a manufacturing zone. It is determined
by the total consumption costs of all its inputs plus the value-added.
Value Added: The value of a production unit is obtained by adding the value of capital and
labor to the value of all other input commodities. Examples of value-added include payments to
money (rent), delivery (salaries), government taxes or subsidies, costs on capital equipment, and

so forth.

2.2 Calibrations of the LUTI models

Calibration of LUTI models is adjusting model parameters to ensure that the model outputs match
observed data. It involves comparing model outputs to real-world data and iteratively adjusting the
parameters until a satisfactory fit is achieved. Calibration is essential to improve the accuracy and
reliability of the model's predictions and enhance its usefulness in decision-making processes. Its
difficulties are based on time, resources, and data, such as theoretical, practical, and methodological
issues [33]. As the main interest of this study is to develop a calibration approach for LUTI models, it
is crucial to overview the existing calibration techniques of the current LUTI models.

Calibration (parameter estimation) is the most crucial factor in LUTI models [36]. This refers to
estimating and adjusting model parameters using a numerical method to minimize differences between
actual and modeled data. However, econometric ad-hoc procedures and trial-and-error techniques have
been conventionally used to calibrate LUTI models [37]. Model calibration and validation are
complicated processes that face theoretical, methodological, and practical challenges in terms of time,
resources, and data; however, for end users to have confidence in the model, they must be

comprehensible[33]. Because of the model's interactions, a modest change in one parameter might result
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in considerable changes in the model's outputs. In such circumstances, calibration is crucial since it aids
in estimating ideal values for specific parameters, resulting in a more robust model [38].

LUTI models are gaining popularity, but their lack of accuracy keeps them marginal, especially at larger
scales. Because of the lack of accuracy, simulation findings cannot be fully confirmed without
calibration, and the calibration of the model should be handled with extreme caution to improve
simulation accuracy [39]. One of the main weaknesses of large-scale models, according to Lee [40], is
the lack of accurate and efficient ways of calibrating their parameters, identifying the values of the
parameters in their equations that resulted in the most extraordinary fit between the model outputs and
real-world observations. Because LUTI models are numerical approaches, they are inherently uncertain
due to the theoretical assumptions they are founded on and the quality of the data they employ. There is
no physical law to confirm the model's credit and validity, and no absolute and comprehensive technique
to calibrate and validate either basic or complicated LUTI models has been established or created.

To calibrate LUTI models, many parameters must be estimated, which will be time-consuming
depending on the estimation technique used. Calibration is a collection of approaches for defining
parameters with realistic values, precise modification, and attempting to fit the model data as closely as
possible to the observed data [41]. Calibration can refer to constructing a model structure, including
selecting a theoretical model, the operational forms of functions and explanatory variables, and,
ultimately, assessing model parameters [35].

Despite significant advances in econometrics, optimization, and computer algorithms, the problem
persisted, as insisted by Wegener[1][27]: “There has been almost no progress in the methodology to
calibrate dynamic or quasi-dynamic models. In the face of this dilemma, the insistence of some modelers
on ’estimating’ every model equation appears almost an obsession. It would probably be more effective
to concentrate instead on model validation, i.e., comparing model results with observed data over a more
extended period”.

Most articles on LUTI models and their applications do not fully describe the calibration technique.
They usually only offer instructions for calibration, even if this work takes months or years and
tremendous resources, and very little guidance is provided on how to instantiate one of these models.
This thesis focuses on developing a global and automatic calibration strategy for LUTI models, so the
models in which such approaches have been applied or created are discussed in this section.

The optimization approach has been widely utilized as an econometric methodology to calibrate specific
portions of the LUTI models; for example, maximum-likelihood optimization is a recurring strategy to
calibrate the microsimulation sub-models that many LUTI models share. The trial-and-error process of
looking for best-parameter values by exhaustively running the model over various parameter values or
combinations constitutes a crude approach to model calibration. Techniques must be used to identify
parameter values that best meet the fitness test criteria of an urban model to calibrate it. For example, it
may be determined that the optimal parameter values may be identified by minimizing the sum of the

squared variances between forecasts and observations [42]. Boittin et al. [39] used Particle Swarm
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Optimization (PSO) to calibrate LUTI models to overcome the limitations of existing methods. They
concluded that many PSO variants are emerging, and it is unclear which one offers better calibration
results.

MEPLAN is a multifunctional software system that may be used for various land use, transportation,
and economic planning projects. It is based on the expertise of Marcial Echenique & Partners (ME&P),
a Cambridge-based research and consultancy firm, in applying mathematical models to actual planning
challenges over time [43]. Abraham and Hunt [21] developed a semi-automatic calibration approach for
MEPLAN based on the minor square optimization technique. They proposed a simultaneous and
sequential calibration approach that was later used in the location choice model for nested logit
parameters.

PECASJ44] is a method for modeling geographic economic systems that are broadly applicable. It is
intended to simulate the land use component of interactive modeling systems for the land use and
transportation model, which MEPLAN inspires. Depending on the technical coefficients, the model
system is based on a quasi-dynamic equilibrium structure with flows of exchanges, including products,
services, and labor, from production to consumption. Nested logit models that include exchange pricing
and transportation disutility are used to analyze trade flows from production to zones of exchange and
from exchange zones to consumption. The calibration of the PECAS model was also based on the
minimization of the least square technique. The Pirandello is a French LUTI model designed primarily
for the Vinci firm by Jean Delons [45]; it offers a theoretically based yet approachable framework for
discussing and analyzing land-use and transportation strategies. Pirandello seeks to enhance the housing
market's representation while delivering information that is simple to understand. Gradient descent is
routinely used to calibrate parameters or groups of parameters, enabling partial alterations to the model
[46].

Paul Waddell [26] created the popular agent-based model UrbanSim, incorporating socioeconomic
change modeling and household composition. Later P. Waddell et al.[13] applied UrbanSim on a
detailed land-use simulation model system and its integration with a regional travel demand model in
Utah's Greater Wasatch Front area. With specific models, UrbanSim replicates the geographical
distribution of households, employment, real estate development, and real estate values annually using
a dynamic disequilibrium modeling technique. Multinomial logit simulates household and job location
decisions, whereas ordinary least square (OLS) regression is used for real estate development and
valuation[47]. The approach for estimating model sensitivity and calibrating the complete model is
provided here[48].

The land use framework UrbanSim was used to model housing prices in the Lyon urban region. A nine-
year back-casting period is used to calibrate the home price model. When used in simulation, the
calibrated model produces pricing dynamics comparable to those seen in the heart of Lyon. The model's
capacity to reflect changes in employment accessibility on price dynamics is demonstrated via

sensitivity analysis [47].
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Stephen Putman developed and applied the ITLUP [49] framework at the University of Pennsylvania in
Philadelphia, USA. ITLUP comprises two modules, DRAM and EMPAL, with more than a dozen active
applications and more than 40 calibrations completed both within the USA and abroad; ITLUP is the
most popular spatial allocation framework in the USA.[50].. ITLUP models distribute jobs and families
to zones even if they cannot handle new employment or households. The present program addresses this
constraint by reallocating excess allocation to zones that can accommodate additional jobs and homes.
Another shortcoming of ITLUP is that the DRAM and EMPAL models are used sequentially, ignoring
concurrent interactions between occupations and residences. Furthermore, because ITLUP does not
consider land prices and commodity flows when distributing jobs and households, it misses essential
linkages and variables of considerable relevance to planners, politicians, and the public [51]. A
sensitivity analysis via Monte Carlo simulation is also included in this work, with very little detail
concerning the calibration. Nonetheless, the black box methodology was determined to be the calibration
method.

The MUSSA [52] LUTI model was created to estimate the expected placement of inhabitants and firms
in metropolitan areas using bid-rent and market equilibrium. Macroeconomic assumptions are used to
forecast population and business growth over time. The location of inhabitants and firms are then
predicted by MUSSA utilizing a static demand-supply equilibrium with location externalities at a
particular time in the future. The model comprises a sequence of nonlinear fixed-point equations, and
the solution is found using an iterative gradient descent approach. Econometric approaches are used to
calibrate MUSSA, providing the parameters needed by functions that reflect demand and supply
behavior. [25]. For MUSSA, no automatic or semi-automatic calibration approaches have been
proposed.

The following input-output model may be used to explain the calibration process implemented in
TRANUS mathematically.

[X,H]T = f(x%t, pact p) 21
Where H stands for the vector of adjustment parameters (shadow prices), which enables the correction
of the initially provided prices by appointing appropriate values of unit production prices P, X denotes
the matrix of computed production, and p represents the vector of economic parameters.

TRANUS calibration process uses data and economic parameters as inputs and adjustment variables

(shadow prices h) as outputs; this process is shown in Figure 2-4.
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Figure 2-4: TRANUS calibration process[53]
Slika 2-4: Postopek kalibracije TRANUS

The land use and activity module equilibrates offer and demand repeatedly, as well as computing
consumption costs and pricing. The transportation module, on the other hand, allocates the network's
transport demand and computes the new transportation costs. This process is repeated until a general
equilibrium state is discovered. The model has been used extensively throughout North, Central, South
America and Europe.

NICOLAS PUPIER [29] developed the LUTI models of Belo Horizonte cities in Brazil using TRANUS
as the LUTI model, although little detail is provided on how the calibration was done. TRANUS is also
used for Lille in France. Ad-hoc processes and econometric methodologies were used as the calibration
techniques by Fausto Lo Feudo [54]. Various econometric approaches and ad-hoc submodule calibration
are used for several calibration methods. The purpose of optimizing using fundamental solvers is to get
better parameter estimates. In all other cases, a highly skilled consultant does the calibration. (e.g.,

http://modelistica.com).

P. Dutta et al. [55] developed an algorithm to calibrate the LUTI models using maximum likelihood
estimation. Furthermore, they examined the propagation of uncertainty during the calibration process of
TRANUS using the Monte Carlo method. Then, a probabilistic verification methodology of the
calibration process using a statistical hypothesis test was proposed. They noted that the error in the
observed values of the outputs from the land-use module follows a Gaussian error. An assessment of
TRANUS shadow prices and other parameters has been conducted by Capelle et al. [56], who also
developed an optimization methodology for the partial calibration of TRANUS [6]. Here, shadow prices
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are price-correcting additive variables that compensate utilities to mimic base-year production.
Estimating shadow prices is a part of the calibration of land-use models.

Nevertheless, it was discovered that the original TRANUS model with one shadow price per observation
bore a risk of overfitting. In addition, Capelle et al. noted that determining and removing the unnecessary
number of shadow prices may not be performed automatically and requires an expert eye. Later, Feudo
et al. [13] proposed a semi-automatic process using non-linear optimization and curve fitting to calibrate

the floor space substitution parameters, and they extended the technique proposed by Capelle et al. [61].

2.3 Optimization techniques

Optimization is a significant topic of mathematics with various subfields focused on problems with
specific features that may be used to find efficient solutions. A comprehensive overview of current
changes and prospective tendencies of optimization techniques have been provided here[62], [63].

Optimization is a branch of applied mathematics concerned with determining the extremal value of a
function in a defined domain while considering various variable values. The following system of
equations is the general form of an optimization problem, which is a strategy for optimizing the objective

or cost functions:

min, f(x) 29
gi(x) <0 i=12..,m
hi(x) =0 j=12,..,n

Xpp < Xy < Xgy k=12, P

In equation 2.2, the objective function is indicated by f(x), the constraints are denoted by g;(x), h;(x),

and the decision variable vectors (x) That fulfills the desired constraints, referred to as the viable
solutions of the optimization model. Optimization techniques or algorithms answer the problems
described in equation 2.2. The method determines the design variable values that produce the optimum
objective function value while fulfilling all equality, inequality, and side constraints. The available

optimization approaches can be classified in several ways.
2.3.1 Local Optimization

We are not interested in the local optimization technique in this work, so only a brief overview is covered
here. The goal of function optimization is to find one of its extrema. Maximizing may be converted to
minimization and vice versa by changing the overall sign of the supplied function. As a result, the terms
minimization, maximization, and optimization are frequently used interchangeably. Finding a minimum
value for convex functions is equivalent to finding the lowest feasible function value, and this value may
be determined with a single local minimization from any starting point. However, a nonconvex function

with several minima of distinct function values is encountered in many fascinating applications. Finding
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only one minimum, on the other hand, gives us nothing about the global optimum function value. Also,
they discovered that the starting point of the optimization approach will highly influence local minimum.
Gradient-based algorithms are used in the majority of local optimization strategies. Gradient-based
algorithms are commonly utilized in engineering to solve various optimization issues. These methods
are popular because they are efficient (regarding the number of function evaluations necessary to
identify the optimum), can handle problems with many design variables, and require slight problem-
specific parameter adjustment. These algorithms, however, have significant shortcomings, including the
ability only to find a local optimum, difficulties addressing discrete optimization problems, and

sophisticated algorithms that are difficult to implement quickly and are subject to numerical noise [64].
2.3.2  Global Optimization

Throughout history, generic optimization topics have played an essential role in engineering
applications. Lagrange published the first significant work in optimization in 1797 [65]. Unlike local
optimization, regardless of the beginning position, a genuinely global minimization should be able to
determine the global minimum function value. In a non-convex situation, such deterministic global
optimization offers beneficial information. Sometimes, problems have several optimum values, as

illustrated in Figure 2-5 below by a simple one-variable function.

i : :
21.5 -1.0 —0.5 0.0 0.5 1.0 1.5

Figure 2-5: One-dimensional multi-modal function
Slika 2-5: Enodimenzionalna multimodalna funkcija

As illustrated in Figure 2-5, the minima at x = +1 are local (or relative) minima, whereas the minima
at x = 0, are global (or absolute) minima. Depending on which of these three points is reached first, the
local algorithms outlined thus far will converge on either of these three places. When employing local
optimization techniques, a multi-start approach is a straightforward way to deal with several local
minima in the design space [66][64].

Global optimization algorithms have a significantly greater probability of discovering a model's global
or near-global optimum value than the local algorithms covered thus far. It should be noted that no
algorithm can guarantee general convergence on a global optimum. Therefore, referring to these
algorithms as having global features may be more correct. International optimization techniques can be

categorized as stochastic search (e.g., evolutionary computing) or deterministic algorithms. Several
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studies have examined the methodology and applications of deterministic global optimization,
demonstrating the advanced state of research and the widespread usage of such approaches in
practice[67], [68].

As we are interested in developing an automated and global optimization strategy for calibrating LUTI
models utilizing the differential evolution (DE) algorithm, a member of the evolutionary algorithms
(EAs) family, this thesis does not explore deterministic techniques. For decades, stochastic—heuristic
global optimization methods have been used to solve much more significant problems at the cost of
losing any assurance about the solutions or even the convergence behavior. Fundamental introductions
to EAs and global optimizations may be found here[69], [70]. This thesis provides a brief sketch in the

following sections for completeness.
2.4  Multi-objective optimization

Optimizing the objective function(s), which one or multiple equations can represent, is the final goal of
an optimization problem. Most optimization methods involve a single objective function that seeks to
maximize a specific benefit or income or minimize a particular cost or time. The optimal trade-off
between two or more related objectives is optimized using multi-objective functions. Multi-objective
optimization problems are frequent in engineering applications due to the multi-criteria decision
complexity of most real-world situations. As the name implies, multi-objective optimization situations
contain numerous objectives that must be maximized or minimized simultaneously and are frequently
at odds with one another. Because evolutionary algorithms (EAs) deal with a set of candidate solutions,
it appears reasonable to use them to identify a set of optimum solutions in multi-objective optimization

problems. EAs have proven efficient in addressing multi-objective optimization issues [71].
2.4.1 Evolutionary Computation (EC)

Evolutionary computation is a method for finding optimal solutions to problems by iteratively testing
several candidates or prospective solutions, selecting the "better" ones, modifying them, and producing
new candidates to verify based on fitness values. Evolutionary computing (EC) is a recent search
strategy that employs computational models of evolutionary and selection processes.

Evolutionary computation derives much of its terminology from genetics, cellular biology, and
evolutionary theory since it is motivated by natural selection and genetics. A potential solution is an
individual, while the population refers to the total number of individuals currently in the evolutionary
computation system. Depending on the circumstances of the answer to a problem, this population may
be subdivided into different population subgroups. The genome or chromosome is an individual's
physical representation (encoding). Each chromosome comprises a series of gemes or traits that
characterize an individual. When individual solutions are adjusted to generate new candidate solutions,

this is called breeding, and the new candidate solution is referred to as an offspring or a child. A potential
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solution is assigned a fitness value during evaluation, demonstrating the solution's validity in the context
of a specific problem. A new generation is defined as the replacement of the present population by

offspring. Finally, evolution reflects seeking the best choice [75].
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Figure 2-6: Evaluation Computations (ECs) General Flow-Chart
Slika 2-6: Splosni diagram poteka ocenjevalnih izracunov (EC)

As illustrated in Figure 2-6, an initial population of individuals (potential solutions) is formed before
the valid evolutionary process begins. The initial population has traditionally been generated randomly,
although numerous different initialization procedures have also been utilized (e.g., starting from a set of
previously known or arbitrarily assumed solutions). Each member of the initial population is then
examined and awarded a fitness value. The selection process picks a portion of the current population
as parents to develop new individuals based on their fitness ratings.

When the selection system favors individuals with higher fitness values, the children produced are more
likely to be competent. After selecting a set of parents, the new individuals are formed by duplicating
them and using mutation technicians. The general form of evolutionary computation is shared among
all its family members. It begins with the generation of individual populations at random and continues
with evaluating the fitness of the individuals within the population. The best individuals are chosen to
breed, resulting in the creation of a new population. The old population is then replaced with the new
population, and the procedure is repeated during the fitness evaluation phase. The process repeats until
a perfect candidate is found or all resources are depleted. The program returns the best-fitting individual

it found during its runs.

Algorithm 2-1: General Evaluation Computation [75]
Initialization

population P « Initialize (NP)

Evaluation (individual xpeg; < nil)
Main loop (G)

Repeat until the stopping criteria are met.

For each individual x; € P
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Evaluate fitness (x;)
If the fitness of x; is assessed as optimal
Break and return best
If best is nil or the fitness of x; is better than the fitness of best
best < x;
Population Q « ¢
Until |QIl = lllI
Q < ¢ UBread (P,[IQll - lI¢l)
Q¢
Return best

The population size is determined by (NP), and the value (G) represents the number of generations or
how many times the population is appraised and bred until the algorithm gives up. Population Initializing
returns a set of (N P) Initial individual, which is typically produced at random.

Fitness evaluation (x;) assigns a fitness grade to an individual based on the quality of prospective
solutions. Breed (P, ||Q]|| — l|¢]l) selects individuals from the population P based on their fitness,
duplicates them, and then uses a modification procedure to develop new candidate solutions. The breed
produces an optimum of ||Q|| — ||¢|| New individuals (typically just one or two) are introduced to the

next-generation population Q [75].
2.4.2 Evolutionary Algorithms (EAs)

EAs are a stochastic search and optimization approach based on natural biological evolution principles
[76]. EAs work with possible solutions that are updated based on two fundamental concepts. EAs have
basic processes, yet they have shown to be resilient and have intense search and optimization
approaches. However, these optimization issues typically need a considerable number of computational
capabilities and include a significant quantity of unknown information. Evolutionary methods for
handling multi-objective optimization problems have become famous as a study area in recent years.
Among the various approaches proposed, three that are exceptionally comparable and popular are the
genetic algorithm (GA) [77], particle swarm optimization (PSO) [78], and differential evolution (DE)
algorithm [79]. While GA is more well-established due to its earlier introduction, the more recent PSO
and DE algorithms have begun to receive increasing attention as multi-objective optimization
techniques. This study's primary focus is applying and developing the DE algorithm as a multi-objective
optimization technique for calibrating LUTI models. Because of their similarities, the Genetic algorithm
and PSO optimization are used as comparative versions to validate the proposed calibration approach.
Evolutionary algorithms are based on Darwin's theory of evolution [80], which outlines the survival of
the fittest through natural selection and the enhancement of individual species' fitness. The natural
selection of randomized individuals contributes to the search for the optimal chromosomal value in the
universe of potential solutions. The algorithms designed under the umbrella concept of evolutionary
computation are primarily focused on selecting a population as the initial possible solution. The quality

of the original population continuously improves because of incremental processing of the current
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population employing evolutionary operators, including crossover, recombination, selection, and
mutation. Various computing algorithms, such as genetic algorithms, genetic programming,
evolutionary strategies, and evolutionary programming, have been developed based on this
evolutionary principle and can address complicated problems where standard mathematical approaches

are challenging to apply [81].
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Figure 2-7: Classification of Optimization Algorithms [82]
Slika 2-7: Razvrstitev optimizacijskih algoritmov

2.4.3 Genetic Algorithm (GA)

Genetic algorithms (GAs) are evolutionary computing algorithms that employ methodologies influenced
by natural evolution. Professor John Holland [77] of the University of Michigan devised and developed
the first GA in the late 1950s and early 1960s, which tackles various optimization issues using biological
genetic and evolutionary concepts. The GA algorithms have demonstrated their application power in
resolving real-world matters, which are vague, complicated, and involve multimodal objective
functions. The accompanying algorithms, such as simulated annealing and other guided random
methods, are comparable to this optimization method. GAs use random search techniques to locate the
global optimum of the solution. These algorithms outperform "gradient descent" approaches, which are
susceptible to being stuck in local minima.

On the other hand, GA is distinct from pure random search algorithms in that they instantly look for the
relatively "prospective" portions of the search space. GAs are suitable for discrete and noisy spaces and,
as a solution, may be considered optimal. Complex circumstances, such as nonlinearity and shifting
parameters, impose increased demands on the use of GA in land use research, with infinite issues [86]

Holland [77] proposed that binary strings be used to represent the chromosomes. Crossover and mutation
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are genetic operators that create children from two sets of chromosomes. Crossover refers to the
exchange of parts of genes between two chromosomal parents. The division of the chromosomes into
two portions is determined at random. Mutation occurs when individuals in the genome are switched.
The third operator is a random selection, in which the probability of being chosen is proportional to the
individual's fitness (cost or objective function value). As a result, even the weakest candidate can be

selected.
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Figure 2-8: Genetic Algorithms (GA) General Flow-Chart
Slika 2-8: Splosni diagram poteka genetskih algoritmov (GA)

Figure 2-8 Illustrated the GA implementation process. Even if this is not true, the GA is built on one
primary precept: "Good parents have better children.". Generating a random population of chromosomes
(potential solutions) is the initial stage of the algorithm. The parents are represented by two
chromosomes chosen from the population. The degree of fitness, f{x), of each chromosome in the
population is used to evaluate its performance. The next stage is to choose two chromosomes from a
new population to act as parents in a crossover process. Crossing the parent's chromosomes may result
in children (offspring) based on the user's specified crossover probability. If there is no crossover, the
offspring are identical to their parents. The mutation is a random process in which the genes inside the
chromosomes are perturbed according to the mutation probability set by the user. Following the
mutation process, new chromosomes are born and assessed by their f{x). If the children's f(x) is higher
than the parents', this pair of chromosomes is assigned to a new population during the performance
evaluation procedure. If the parents outperform the children, the parents' chromosomes are introduced
into the following generation. For the subsequent iteration, the best f{x) of children or parents will be
included in the new population. Finally, the entire procedure is repeated until the termination criteria are

met.
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2.4.4 Particle Swarm Optimization

Particle swarm optimization (PSO) is a stochastic search technique inspired by the flocking/swarming
behavior seen in nature. PSO's origins may be traced back to the use of particle systems in the graphical
modeling of ambiguous objects. Eberhart and Kennedy [78] developed PSO based on these particle
flocking systems. The swarm terminology is selected instead of flock since the behavior of the systems
was consistent with swarm intelligence principles [87]. The PSO, established based on the regulations
and laws of socially structured populations in nature, is one of the most exciting study fields within
computational swarm intelligence. The swarm is made up of particles, which are individual agents. The
population of particles is used in PSO optimization, representing the potential solutions overall in the
search space. Particles move around the search area according to predetermined dynamics and
eventually converge toward the best solution. Swarm-based algorithms have promised performance
since they are efficient, resilient, and easy to implement [88]. The strength of PSO, in comparison to
other Artificial Intelligence optimization approaches, lies in its ease of implementation.

Regarding success rate, solution quality, and convergence speed, the performance of several
optimization techniques now utilized in the industry and their computing efficiency clearly shows that
PSO outperformed other algorithms [89]. Each particle in PSO contains a memory component,
distinguishing it from different naturally inspired evolution algorithms like genetic algorithms (GAs) or
differential evolution (DE). In contrast to GA or DE, where population individuals cannot return to a
previously preferred solution, memory is a crucial aspect of PSO. It permits particles to return to

previously best-known solutions [90].
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Figure 2-9: (a) Particle local and global best (b) Particle vector components [91]
Slika 2-9: (a) Lokalni in globalni najboljsi delci (b) Komponente vektorja delcev

Figure 2-9 (a) describes the PSO approach, which involves a collection of possible solutions known as
a "swarm of particles" generated in the search space with initial random positions and velocities. At the
same time, the PSO vector components are seen during the updating process in Figure 2-9 (b). The
current location's essential, local, and global best vectors are added to provide the updated position [92].
The revised position results from the summation of the primary vectors [83]—[85] of the current situation,

local best vector, and global best vector. Every particle has its location and velocity at any specific time
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[93]. Each particle in the search area attempts to find its solution to the problem to reach the “global
best” solution. All particles have fitness values that are assessed by the cost or fitness function to be
optimized and have updated values, as well as velocities that regulate particle movement.

PSO has outstanding application results; it has lately been utilized successfully in combination with
various deformable models. Asl and Seyedin [94] use PSO instead of GA to implement the approach
presented in [95], yielding the same precision in less time. Cruz-Aceves et al. [96] have introduced a
new picture segmentation approach based on several active contours driven by particle swarm
optimization. A multi-population PSO operates an operational contour model [97], stressing the model's
capacity to adapt to geometries with substantial concavity.

Because of its performance in addressing unconstrained optimization problems, several researchers have
employed PSO to solve restricted optimization problems in recent years. Liang and Suganthean [98]
presented a novel dynamic multi-swarm PSO with a novel constraint to address constrained optimization
problems. Krohling and Coelho [99]suggested a co-evolutionary PSO based on Gaussian distribution
for handling restricted optimization by generating the acceleration coefficients using a Gaussian
probability distribution. Pulido and Coello [28] developed a straightforward approach for dealing with
PSO constraints. According to their stated method, if the particles evaluated are infeasible, the best

particle has the lowest value in its normalized violation of conditions.
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Figure 2-10: Particle Swarm Optimization (PSO) General Flow-Chart
Slika 2-10: Splosni diagram poteka Optimizacije Roja Delcev (ORD)

Figure 2-10 describes the general approach of the PSO, which initializes with a set of random particles
that represent potential solutions, and then it updates generations to look for optima. Because the
technique is iterative, the positions will vary with each time step. Furthermore, each particle will keep
track of its optimum position. The particles are updated by the two best values at the end of each

iteration. Local best (Pg.s) is the best solution or fitness it has obtained so far, though, at which
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optimum values are stored throughout the process up to the current iteration. Global best (ggest) 1s the
other best value, the fittest position amongst all the other particles within the swarm [100]. Position and

velocity change are estimated with equation 2.3, whereas equation 2.4 yields the new position of the

target particle.

vE=wol Tt ol (pF T — X)) el (pE T — XY 2.3
xf=x{"t+vf 2.4
Where:

- krepresents the current iteration, while the prior iteration's index is k-1

- i=1,2.., Nis the population size

- ¢ and ¢; are the acceleration coefficients, commonly between [1, 2]

- ry and ry; are evenly distributed random numbers between [0, 1]

- w stands for the inertial weight factor, which is normally between [0, 1]

- x/ represents the position of the particle i at the iteration k

- v/ represents the velocity of the particle i at the iteration k

- p/! represents the personal best position of particle i for the previous iteration.
- pc~'represents the neighborhood's best position for the previous iteration.

2.4.5 Differential Evolution Algorithm

Storn and Price[79] presented a stochastic population-based evolutionary algorithm called Differential
Evolution (DE). DE is a straightforward yet effective method for solving issues in continuous spaces.
The DE method is a well-suited optimization technique due to its limited number of control parameters.
Like GA, the DE algorithm has similar operators: crossover, mutation, and selection. The main
difference between the GA and DE is the mutation scheme that makes DE a self-adaptive selection
process. The primary advantages of DE over a typical GA include its accessibility, its efficient memory
use, reduced computational complexity (it scales better when dealing with significant issues), and its
lesser reliance on computing efforts (faster convergence) [104]. DE has several advantages over other
evolutionary algorithms in that it is simple, easy to use, fast, and has a higher chance of discovering the

global optimal solution for function optimization [79], [105]-[108].

Moreover, DE optimization is simple, fast, easy to use, very easily adaptable for integer and discrete
optimization, quite effective in nonlinear constraint optimization, including penalty functions, and
valuable for optimizing multi-modal search spaces, as well as multi-models, multi-objective,
constrained, and dynamic models [109]-[111]. While DE is not always the fastest approach, it is
typically the one that delivers the best results, while the number of occasions where it is also quicker is
substantial. DE also demonstrates its robustness regarding how control parameters are set and the
consistency with which it discovers the genuine optimum. Furthermore, compared to one-point
optimizers such as Powell's approach, DE is generally resistant to changes in beginning populations. DE
is versatile enough to tackle situations when the objective functions lack the analytical definition

required to compute gradients since it is a direct search approach. DE is also relatively simple to
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implement and change. DE is also easy to set up and tweak. The researchers discovered it is a suitable
initial choice for starting a novel, complex global optimization problem with continuous and discrete
parameters[69]. DE also can break free from local minima. DE has been used as a single-objective and

multi-objective optimization approach to solve various engineering design challenges.

DE algorithms outperform Adaptive Simulated Annealing, the Annealed Nelder and Mead approach,
GA, the Breeder GA, the easy evolution strategy, and the method of stochastic differential equations, as
well as Particle Swarm Optimization algorithms, in terms of the required number of function evaluations
necessary for locating a global minimum of the test functions [9], [111]-[113]. That is why we consider

DE a global optimization tool to achieve the objective of our study.
2.4.5.1 DE structure and parameters:

DE algorithm is among the most successful evolutionary algorithms, simple but effective, that has
demonstrated its ability to tackle many optimization issues. Since its inception, it has piqued the interest
of numerous scholars who have proposed new, enhanced, state-of-the-art algorithms. DE operators and

processes are presented in Figure 2-11; details are provided in the coming sections.
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Figure 2-11: Differential Evolution (DE) Algorithm General Flow-Chart
Slika 2-11: Splosni diagram poteka algoritma diferencialne evolucije (DE)

A. Initialization:

The DE algorithm is a population-based meta-heuristic technique that uses a population of NP

individuals, each represented by a vector of D-dimensional decision variables, as shown in Figure 2-11.
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The population is randomly initiated within the search space R, which includes all involved parameters’

vectors, and X'i g denote each vector.
X}, = (xlg x2e 23, o xPs), 1 =1,23,..,NP,j = 1,23,..,D,and G = 12,3, ..., Gax 2.5

NP denotes the population size, D is the problem dimension, and G represents the generation or iteration
number. Because decision variables are typically tied to physical components or measurements with
natural boundaries, there may be a specified range in which the value of the decision variable should be
defined for each specific problem. The Individuals inside the search space bounded by the specified
minimum X,,,;;, and maximum X, Constraints should be uniformly randomized to cover the whole

range as much as possible in the initial population at the generation. G .

An initialized individual vector can be defined as follows:

b ] J .
Xi.O - xmin +rand. (xmax xmin) 2.6

Where rand demonstrates a uniformly distributed random generator with a range of [0,1] for the i*"

individual vector.
B. Mutation

Following the initiation stage, the mutation procedure produces a new offspring. The mutations of DE
are characterized using the DE/x/y/z nomenclature. Where x represents the target vector, such as
"random" or "best," y denotes the number of difference vectors used to modify x, and z denotes the
recombination operator employed, which might be binomial or exponential. By mutating each target
vector X;;, DE generates a donor vector v;, in the current iteration. Several generated mutation
strategies are represented in the literature; the most often used mutation techniques are mentioned in

[114]-[118].
C. Crossover (Recombination)

Crossover is another DE operator that follows the mutation phase to create a trial vector. u; ; using
target vector x, ; and corresponding donor vector v; ;. To ensure population variety, the Crossover rate
parameter Cr controls the amount of the perturbation of the base (target) vector. It was formerly assumed
that crossover may exponentially enhance the chance of above-average parameter groups while lowering
the probability of below-average groupings [77]. Research conducted more recently indicates that
growth is not exponential since the selection advantage of a parameter grouping decreases as it becomes
more prevalent. Furthermore, empirical data implies that (uniform) crossover does not reduce the
computational complexity of an EA but rather speeds convergence by a constant factor. Despite this,

crossover plays a substantial part in most EAs optimization systems[119].
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Figure 2-12: One-point Crossover example [107]
Slika 2-12: Primer enotockovnega krizanja

As illustrated in Figure 2-12, a vector of parameters is represented by each string. The trial vector
receives a continuous series of parameter values from each vector. The crossing point is picked at
random. It happens between the third and fourth factors in this situation. DE crossover procedures
regulate the number of inherited components in a mutant vector to create a target vector. The most

common crossover techniques are Uniform (binomial) and exponential.
a. Uniform (binomial)

Binomial or uniform crossover approaches are extensively used in the DE family of algorithms.
Binomial crossover is implemented on each d-variable whenever a randomly generated value in the
range [0,1] is less than or equal to a pre-determined value Cr, known as the crossover rate. In this
scenario, the number of variables transmitted from the donor vector has a (near) binomial distribution.

The scheme may be written as:

j .
i Nvigsr rand;;[0,1] < Cr
Uic = j . 2.7
Xi g otherwise

Where Cr represents the crossover rate parameter, which usually ranges between 0 and 1, rand, ; It is
a uniform random integer that also ranges between 0 and 1. In each iteration, rand, ; is instantiated
once for each component of each vector and assures that the trial vector u;; receives at least one

component from the target vector v; ;.

Jrand
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' S X 3
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Figure 2-13: Uniform (Binomial) Crossover example [107]
Slika 2-13: Primer enotnega (binomskega) krizanja
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Figure 2-13 represents an example of binomial crossover, which could begin at any random place (e.g.,
Jrana = 3) by producing a random number for each dimension; if the number is smaller than the
crossover rate parameter Cr, the trial vector is inherited from the mutant vector; otherwise, the target's

vectors are copied.
b. Exponential

Although exponential crossover in DEs takes a different technique, it accomplishes the same result as
one- and two-point crossovers. To make the trial vector U; 4 Distinct from the vector with which it will
be compared, one parameter is picked randomly and duplicated from the mutant to the relevant trial
parameter. Crossover rate Cr is compared to a uniformly distributed random number.
(i.e.,rand; [0,1]) that is created new for each parameter to establish the source of the following trial
parameters. Parameters are taken from the mutant vector as long as (rand;[0,1] < Cr) is valid.

Otherwise, the current and all remaining parameters are obtained from the target vector [107].

Jrand

i=0 1 2 3 4 5 6 7
Vig | 12 | 26 | 51 | 8 | 30 | 50 | 75 | 95 |
r(_; Cr Start—e r S’Cr r4S' Cr

Yy Vv v
Uig | 7 [ 26 [ 68 | 8 | 30 [ 11 [ 54 | 95 |

rs=Cr Fr=Cr r=Cr  1=>0r

Xi,gl7I|104|6IS|13|44|1.1|5:4|39|

Figure 2-14: Exponential Crossover example [107]
Slika 2-14: Primer eksponentnega krizanja

Figure 2-14 illustrates an example of an exponential crossover. It begins at any arbitrary point, such as
Jrana - It mutates each dimension of the trial vector. U; ; until a random number bigger than (Cr) is
reached or the current individual's maximum dimension is reached. Because it ends if a single test
condition is incorrect, this crossover scheme integrates less variety in the new person than the binomial

crossover method.
D. Selection

A selection operation is used in the DE algorithm to create new population members. The selection
operator employs a greedy approach, comparing the fitness of the trial vector. u; ; , to that of the target
vector X, ¢ , and selecting the vector with the best fitness as a new population member, which replaces

the target vectors for the next generation.
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Wi if fluig) < f(xig)

4 2.
X;c oOtherwise 8

XiG+1 ={

Where the objective or cost function of the optimization problem is represented by f{.), as a result, if the
new trial vector produces an equal or lower value of the objective function, it replaces the associated
target vector in the next iteration; otherwise, the target is kept in the population of the following
generation. Due to the crossover procedure, target and trial vectors can have the same numerical values
for some decision variables. The three major parameters of the DE algorithms are mutation probability
(uF), crossover rate (Cr), and population size (NP) [120], [121]. The mutation operator of the DE
algorithm is performed to integrate new information into the population, whereas the crossover operator
exchanges information between the trial and target vectors [122]. The parameter values used by the DE
method are sensitive[116], [118], [123]. The control parameter (#F) boosts convergence; with a small
value, it focuses on exploitation, and with a considerable weight, it is on exploratory ability [123]. By
rearranging competing vectors, the crossover strategy provides possible decomposability in the

population (VP) [124], [125].
2.4.5.2 DE Literature Review

Several evolutionary algorithms (EAs) have been constructed as population-based strategies that address
various optimization problems utilizing techniques derived from the natural evolution process. The
reproduction operator is one of the primary distinctions amongst the established evolutionary
algorithms[119]. The reproduction operator determines how new trial solutions are developed and
evolved during optimization. The Differential Evolution (DE) approach is a stochastic metaheuristic
algorithm that has successfully solved numerous optimization problems. The DE algorithm iteratively
improves the given answer during the evolutionary search using mutation, crossover, and selection
procedures. Sequential model-based algorithm control (SMAC) and multi-armed bandit optimization
are two well-studied and generic methodologies for fine-tuning control settings [126], [127]. Many
academics were inspired by this thought to create effective adaptive strategies for controlling parameters
and process updates depending on various factors throughout the search. The algorithm's performance
can be increased if the parameters and strategy adjustments are carefully thought out. Many scholars
have used deterministic rules and adaptive/self-adaptive parameter control settings to regulate parameter
settings for DE [128]. The first kind is a regulated parameter setup based on certain deterministic
principles, with no information returned from the optimization search loop. The second method is
primarily an adaptive control for the parameters based on the interplay of feedback information from
the evolutionary search and control parameters. The central concept is to embed the parameter values
into each individual and then develop them during the search. During evolutionary evolution, the values

capable of producing superior offspring are more likely to survive to the following generation.
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This category contains a large number of recently suggested DE algorithms. To improve the
performance of their systems, several researchers combined the DE algorithm with other evolutionary
algorithms or local search approaches. On the other hand, other techniques have used adaptive control
settings and hybridization systems. Different improved DE methods have been developed in the
literature during the last few years. Yang et al. [129] presented an auto-improved population diversity
at the dimension level in 2015. The system measures the population distribution at each dimension to
detect stagnation situations. If the algorithm detects stagnation during the search, the population is varied
to an acceptable level, allowing the algorithm to achieve a higher convergence rate. To boost DE's
performance, Li et al. [130] performed a fantastic job by employing two models; the first one is a
distributed model that is used to develop new and better individuals and improve exploratory abilities,
while the other approach is a centralized model for which the convergence speed was increased by using
an evolution route based on covariance matrices adaption (CMA). When an individual gets stuck for
several generations in an optimization system utilizing the DE algorithm, the parents are picked from
an external archive that holds prior successful solutions [131]. Another enhancement to the DE
algorithm is the addition of an adaptive ranking mutation operator, which ranks individuals based on
three scenarios: infeasible, feasible, and semi-doable—this strategy aims to address the constrained
issues [115]. Arithmetic recombination is combined with a DE technique that uses an ensemble of
parameters to perform multi-modal optimization issues. The arithmetic recombination is used on the
trailing vector with three random individuals with neighborhood mutation to enhance exploration and

increase exploitation.

DE employs a primary mutation operator based on differences between pairs of solutions (referred to as
vectors) to determine a search direction based on the distribution of solutions in the current population.
DE also employs a steady-state-like replacement process, in which the freshly formed offspring (called
a trial vector) competes exclusively against its matching parent (old object vector) and replaces it if the
offspring has a better fitness value. DE has various similarities and differences with prior EAs. The
following are examples of parallels: DE is a population-based technique in which crossover and
mutation are the variation operators used to develop novel solutions, and a replacement mechanism
gives the ability to keep the population size stable.

In contrast to GA, which might employ binary encoding, solutions in DE are coded using fundamental
values. DE, on the other hand, does not employ a fixed distribution to regulate the behavior of the
mutation operator; instead, the current distribution of the solutions in the search space defines the step

size and search direction for each individual; this aspect appears to be one of its primary benefits [132].
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3 RESEARCH METHODOLOGY

In the case of LUTI models, calibration generally entails the whole model design process, including
establishing economic sectors, acquiring data, and zoning the research region. In this thesis, calibration
refers to the method of estimating model parameters. The calibration procedure entails altering model
parameters to duplicate data from a previous year in the research region. Getting a decent calibration is
a time-consuming operation customarily done by experts and might take months. The different
parameters of the model are estimated using a variety of approaches. Experts employ econometrical, ad-

hoc processes and interactive trial-and-error methods to acquire results.
3.1 TRANUS

Consider a scenario where a region is divided into () sectors and (M) zones, and observed production
and pricing statistics are available for a specific base year. The set of actual production and prices are
denoted by X*' and P*' € RN™M, respectively.

The iteration process is designed in such a manner that the shadow prices (/) are updated to push the
productions (X) to replicate the actual productions (X**) in the research region R ™. These variables
will attempt to compensate for the other factors to achieve a perfect fit; these parameters serve as
correction terms for parts of the utility that the model does not reflect.

The following equations (full mathematical description can be found here [18]) are governed by the
combination of geographical zones (i & j) and economic sectors (n, m & k) in a specific iteration (t).
The following equations are coded in Python-3 to replicate the TRANUS model. Further, this model
will be called through the calibration approach.

Before the start of the iterations, the attractors for the induced production are calculated as follows:
A = (5, bR W ¥
Where X ik't_l represent the total production (exogenous + induced), by relative weight and Wi"'t Initial
attractor.

The iterations start with the computing of the induced demand, the first intermediate demand based on
the following equations:

al™ = min™ + (max™" — min™)exp (—6™"U}) 3.2
Where min™" and max™" Represent the minimum and maximum amount of sector (#) demanded by
the unit production of sector m, —8&™™ represent the elasticity parameters and U™ The disutility of
consumptions for a sector (#) in a zone(#). Then, here, the total demand for inputs (#) in a specific area

(?) is calculated as follows:

D = (Xi™ + X™)al" ST 3.3
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D} =3%,D" + D" 3.4
Where X;™Represent the exogenous production, X} the induced productions, D;" exogenous demand
and D7 Is the total demand for a sector (n) in a zone (i). S = 1, represents the substitution proportion
of sector (rn) when consumed by sector (m) in the zone (7).

Production cost is calculated based on the consumption cost for the inputs to produce a sector (m) unit
in a zone (i).

" = (X, D" C?) + VAT 3.5
Where CT™ Represent the consumption cost on input in (n) in a zone (i) and VAT is the value added to
the production of the sector (m).

With the following equation, the utility for all productions and consumption will be calculated for the
pairs of a zone (ij) and sector (n):

Ul =2"(p} +h}) + t}; 3.6
Where p;-‘ represent the prices, h}-‘ shadow price (adjustment parameters), t?j transport disutility, and
A™ factor interpret the importance of the prices.

Once the utilities are computed, the probability that the sector () 's production, which is needed in zone
(i) , is in zone (), can be calculated as follows.

pyn = Ao CEUG). 3.7
Y X ATexp (-B"UT) ’
Where A}-‘ denotes the production attractor, B™ dispersion parameter, and U}ljutilities.
With the PTE- and total demand D} total induced production of sector (n), which is assigned to zone (i),

will be calculated as follows:

X7, = DPPr, 3.8
X = ¥, X7, 3.9

Where X Z production for the combination of the sector (n), production zone (j), and consumption zone
(@).

After the demand is assigned to each production zone, the consumption cost for each unit input sector
(n) is computed.

) XY w)-+em)

5T 3.10

C! =
Where tm?j represent the monetary cost needed to transport a unit of (#) from the production zone (j)

to the consumption zone (i).

At the end of each iteration, the shadow prices are computed as follows.

xn

n _ (n n iG__ pn

fo+1 = (hig + Pi,G)Xn i,G+1 3.1
act,G
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Where shadow prices are presented by hi';, Xg s denoted the actual (observed) production, model
production, and prices are represented by X' and P};, economic sectors, geographic zones, and

generation (iteration) numbers are denoted with n, i, and G, respectively.
3.2 Proposed calibration approach

A fully automatic and global calibration approach for the LUTI models has been a wish for all the
experts in recent years. Toward this goal, in this thesis, a novel method using the Differential Evolution
algorithm is proposed and tested on the TRANUS land-use module. The purpose is to replace the
TRANUS current sequential calibration procedure with an automatic and global estimation approach
using a multi-objective optimization technique so that any parameters can be calibrated according to
their restrictions.

We argue that using a differential evolution algorithm as the calibration technique and measuring the
model performance using multi-objective functions MANE and RMSE concerning a set of constraints
is a natural method to achieve this goal. The present TRANUS calibration technique has a scenario
where shadow prices and other parameters are estimated without using an objective function.

Further sections, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) were utilized for
evaluation purposes. Ultimately, optimizing performance improvement is implemented using Hybrid

PSODE and Hybrid GADE.
3.2.1 Sensitivity Analysis

For accurate model tuning and superior prediction abilities, evaluating the sensitivity of the input
parameters on the outputs during the calibration phase is essential. The dimension of the entire
calibration problem may also be significantly reduced with such an analysis if many parameters are
involved, facilitating parameter estimation. Therefore, the first step of the proposed calibration approach
is to conduct a sensitivity analysis of the desired parameters to identify which input parameters affect
the variation of the outputs the most. Then, these parameters and shadow prices are calibrated; the
methodology for this calibration approach is discussed in the subsequent section.

Sensitivity analysis refers to how variation in the output of a numerical model can be attributed to
variations in its input. Assessing the sensitivity of the input parameters on the results is a crucial step to
properly calibrating the model and ensuring better predicting capabilities. To calibrate LUTI models, an
essential number of parameters must be estimated, which will be time-consuming depending on the
estimation technique used.

Global sensitivity analysis is used for a range of very diverse purposes, such as supporting model
calibration, verification, diagnostic evaluation [133], [134], prioritizing efforts for uncertainty reduction

[135], analyzing the dominant controls of a system [136], and to support robust decision-making [137].
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The first sensitivity analysis was conducted on TRANUS by Dutta et al. [17], using “pick-freeze”
estimation techniques. Among other available approaches, the variance-based method allows calculating
sensitivity indices called Sobol’ indices [139]. The influence of each input or set of information is
represented by these indices, which range between 0 and 1 —the higher the index, the more influential
the input. Higher-order indices estimate the equivalent relevance of interactions between information,
while first-order indices estimate the principal influence from each input. Various estimating
methodologies have been utilized in the literature [140] to calculate Sobol indices.

In our study, a sensitivity analysis has been conducted using generalized Sobol indices [139] on the
land-use and activity module parameters of the TRANUS, which are presented in Table 3-1.

Table 3-1: Parameters that are assumed to be unknown
Preglednica 3-1: Parametri, za katere se domneva, da so neznani

Involved

Parameters Description .
Equation

o elasticity parameter of the sector (m) concerning the error of sector(7) 3.2

b the relative weight of sector (k) as an attractor to sector (#) 3.1

p dispersion parameter of multinomial logit model for sector (#) 3.7

w; the initial attractor of the zone (j) considering non-modeled elements that attract 3.1

the location of the sector ()
Atrac.Fac" attractor factor concerning sector (1) 3.7
Ve the factor that regulates the relative importance of prices versus transport 3.6

disutility in the utility function related to the sector (7)

The TRANUS model was first coded using Python to apply the sensitivity analysis. Then, the
generalized Sobol indices for land-use and activity module parameters that were assumed unknown were
estimated using an open-source Python library known as SALIB [141]. In this process, Mean Absolute
Normalized Error (MANE) has been used as an error function, and the influences of input values on the
MANE values of the productions (X";) and prices (P";) that act as the TRANUS land use and activity of
model output were calculated.

The MANE formula is given below:

Xact=Xmod Pact—Pmod

Oputyang = MANEx + MANEp =~ 3 3.12

1
+ 5211\]

Xact Pgct

Whereas X, and P, are observed productions and prices, Xmos and Puoq are modeled productions and
prices, NV is the number of observations, and Oputyane acts as the model overall output values against
input parameters given in Table 3-1.

Figure 3-1 and Figure 3-2 show the sensitivity analysis results carried out on five sets of TRANUS land

use and activity model parameters.
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Figure 3-1: Sobol indices estimation for the parameters of Table 3-1 (Average First-order)
Slika 3-1: Ocena Sobolovih indeksov za parametre Table 3-1 (Povprecje prvega reda)
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Figure 3-2: Sobol indices estimation for the parameters of Table 3-1 (Average Total-order)
Slika 3-2: Ocena Sobolovih indeksov za parametre Table 3-1 (povpreéni skupni vrstni red)

Sensitivity analysis results show that price factor (4”) and elasticity (6™") have the highest impact on
model output (Oputuane). Therefore, these parameters are selected to be used in the calibration process
alongside shadow prices (h") and play a significant role (adjustment factor) in the calibration of the
TRANUS land-use and activity model, as they represent attributes of the socio-economic system that

are not included in the model.
3.2.2 Objective (Cost) Functions

An optimization problem's ultimate purpose is to improve the objective function(s), which can be
described by a single or possibly multiple expressions. Most optimization methods involve a single
objective or cost function that reduces a cost or time or maximizes a specific value or income. Multi-
objective functions are used to discover the optimum trade-off between two or more associated problem
objectives.

The Root Mean Square Error (RMSE) and the Mean Absolute Normalized Error (MANE) are two multi-

objective functions used to calibrate model parameters in prior research and are extensively utilized



36 Skandary, A.H. 2023. Differential Evolution Approach to LUTI model calibration
PhD Th. Ljubljana, UL FGG, Interdisciplinary doctoral study programme Built Environment — Traffic Engineering

worldwide. In several studies and research investigations (i.e., meteorology, air quality, and climate),
RMSE and MANE have been employed as standard statistical tools to quantify model performance
[142]-[144]. MANE and RMSE are also implemented as multi-objective functions in many traffic and
transportation model calibration studies and proved their effectiveness as indicators for model
assessments [145]-[152].

Even though they have been used to evaluate model performance for many years, there is no agreement
on the best metric for model error.

In this thesis, these two multi-objective functions (MANE and RMSE) are utilized to minimize the error
between actual and simulated results of productions (X";) and prices (P")). To this end, the difference
between actual and simulated productions and prices are formalized in the following equations, where
fi and f> are the RMSE values and f; and fs are MANE values of production and prices, respectively.
RMSE and MANE values of production and prices are linearly scalarized with the same weight in f3 and
fs respectively. Both f3 and fs are the model objective (cost) functions that must be minimized as much

as possible during calibration.

N —

fi(x) = RMSEx = M .
N —

fo(x) = RMSEp = M »

fs(x) = RMSEx + RMSEp L
fu(x) = MANEx = %yg% "
fs(x) = MANEp = %Z’YW .
fo(x) = MANEx + MANEp L

Xact and Pact are observed productions and prices, Xmod and Pmod are modeled productions and

prices, N represents the number of observations, and f(x) is the objective function.
3.2.3 Calibration and optimization techniques

LUTI models have attracted the attention of researchers in recent years. They are interested in
developing models which are user-friendly, generic, and have trustable results. Over the past years,
many LUTI models have been developed and applied to different regions and cities. It is a fact that, in
developing land use and transportation integration models, a set of complex nonlinear systems is
employed. Analysis of such systems is a complex and time-consuming task, especially with uncertainty.
Calibration of LUTI models plays a key role by determining the optimal parameters and creating a
trustable model, for the decision maker.

Several optimization methods have been employed during the models' parameters calibration, including
Genetic Algorithm (GA), [86], [153], [154] Particle Swarm Optimization (PSO) [39], [99], Maximum-
Likelihood Estimation [55], Differential Evolution (DE) algorithm[107], [132], [155]-[157]. Although
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many more optimization techniques are utilized in the calibration process, here in this thesis, the DE
algorithm is selected to be used through the proposed calibration approach because of the many

advantages mentioned in previous sections.

3.2.4 Differential Evolution Algorithm

DE algorithm is widely used due to its simplicity and ease of implementation. DE algorithm’s population
of possible solutions is randomly initiated inside an n-dimensional search space where all candidate
solutions have an equal chance of being chosen as parents. Candidate solutions emerge by examining
the whole search space throughout the cycles to find the objective function's optimum. The DE algorithm
employs four fundamental processes: initialization, mutation, crossover, and selection, as they are
common in other EA optimization strategies but have slightly different principles.

The pseudocode of the DE algorithm, which is obtained from [158], is adapted to our study example for
the LUTI model calibration purposes, as shown in Algorithm 3-1. This algorithm consists of two main
parts: initialization and the main loop. The objective function and DE parameters’ values were defined
in the initialization part, and then a random initial population was generated. Furthermore, the TRANUS
model was run, and the objective function for each member of the population was determined to obtain
the optimal objective function value and its matching population. Then, in the main loop, for each
member of the population in every iteration, the TRANUS model was run to evaluate the objective
function (or cost function).

In the mutation stage, each parameter's lower and upper bound values are generally used to clip mutated
values. In contrast, in this proposed approach, a specific technique is used to clip the mutant values,
where the values for each parameter obtained in the mutation process were evaluated with the upper and
lower bounds of the desired parameters (shadow prices, lambda, and elasticity), if the mutation value

obtained was out of the bound, the value of the current population was replaced as the mutant value.
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Algorithm 3-1: Calibration of land use model parameters using modified DE algorithm
Initialization

Define Cost Functions [MANE and RMSE]

Generate a random initial population {xi,0| i =1.2,.., NP}

Evaluate Objective function,

fitness = {f(xi¢),i=1,2,..,Np} %%RUN TRANUS
bestingex = arg min (fitness)
best = Xpest ¢

Main Loop
For i in range (Maxlter):
For j in range (NP):
For k in range (NP):
Select randomly
Xr1,6+ Xr2,G» Xr3,6+ Xr4,G» Xr5,G
€ [1; Np,replace = False]

#Mutation (generate donor vector)

Vi = Xr1,6 + Hr1- (%26 — Xr3,6) + br2.(Xrag — Xrs )
End For
#Crossover (generate trail vector)
Generate randomly, CRygna[o,1] = randint[1; k]
If CRrand[O,l] < Ucr
Uic = Vg
Else
Uc = Xjg
End If
Evaluation of objective function,

fitness = {f(u;¢),i=1,2,..,Np} %%RUN TRANUS

#Selection
I e < f(x)
Xjg = Ujg
f(xi6) = f(wie)
If f(uj,G) < f(xbest,G)
bestingex = J
Xpest,c = Uj G
End If
End If
End For

If the repetition Off(xbest,G) =40 OR

(f (xpest.c) — AVE(f (u;6)) < 0.000001
BREAK
End For
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3.2.4.1 Parameter Settings

Using the DE algorithm as an optimization technique has varying performance depending on the
mutation strategy and selection of control parameters. For different optimization problems, the most
appropriate mutation method and parameter settings vary. When addressing a particular topic, the
parameter values for any optimization approach should be set beforehand. Reviews of the literature
reveal that no single parameter setting works for all kinds of issues.

Control parameters may significantly influence the performance of any evolutionary algorithm, and the
same is true for the DE algorithm. After being specified, the control parameters are fixed during the
search process. In [159], it is proposed that mutation factor (uF) and crossover rate (CR) should have
values between [0.4, 1] and [0.5, 0.7], respectively, and that NP should be [240] *D, where D is the
problem dimension. Different control parameters have various effects on the algorithmic performance
in terms of effectiveness, efficiency, and resilience. However, a range of values is used in previous
studies for each parameter setting involved in the DE algorithm. It is claimed that NP € [3, 8] *D, pur=
0.6 and CR € [0.3, 0.9] are the most appropriate initial selections [160], while Population size NP € [3,
10] *D and mutation factor pF € [0.5, 1.0], are chosen in most cases [9]. Different kinds of parameter-
setting selections can be found in most cases in the literature, so to have the best selections, here in this
thesis, the problem is programmed automatically to search for the best combinations of the parameter’s
values in the specific range presented in Table 3-2. The initial potential solutions are mutated using
various strategies and parameter factors. Several types of mutation strategies are used in DE algorithm
applications for different types of problems, while the most common ones are introduced in the literature
review (section 2.4.5). Each DE strategy has its advantages and disadvantages depending on the
application purpose. Improvement of the mutation strategy is essential to getting the best out of the DE
algorithm. Several generated mutation strategies are represented in the literature; the five most often
used mutation techniques are modified according to the example used in this thesis. A significant
improvement is applied to the mutation strategies (Equations 3.21, 3.22, 3.23), where two different
mutation factors are present. up; and pp, are used, instead of single factor. The results show a
significant improvement in the modeled values of the parameters during the calibration process.

DE/rand/1:vic = Xp16 + tr. (X206 — Xra) 3.19
DE/best/1: Vi = Xpesec + Ur.(Xr1,6 — Xr2,6) 3.20
DE [current — to — best/1:v;c = Xy1,6 + Mp1-(Xvestc — Xcurrent.c) + Hr2-(Xr1,6 — Xr26) 321
DE/best/2 : Vi = Xpese,c + Mr1-(Xr16 — Xr26) + Br2- (X136 — Xya6) 3.22

DE/rand/2 : vy = Xp16 + Mp1-(Xr26 — Xr36) + Mr2-(Xrag — Xrs ) 3.23

Where i, marks the current population member, and G represents the number of generations.



40 Skandary, A.H. 2023. Differential Evolution Approach to LUTI model calibration
PhD Th. Ljubljana, UL FGG, Interdisciplinary doctoral study programme Built Environment — Traffic Engineering

Target vectors x,. ; which are randomly selected from the range [1, NP] and indicted by random indices
[r1,16] are differed from the current vector x; ;. The best individual vector, which indicates the best
fitness value (i.e., for a minimization problem, it can be the lowest value of the cost function) in the
whole population, is presented by X,s¢ . The difference vectors are scaled using the scaling factor.
Ur., which is a positive control parameter. DE mutation strategies are implemented with automatic
programming, using MANE and RMSE, in the ranges of values mentioned in Table 3-2.

Table 3-2: Parameters settings for DE operators (RMSE and MANE)
Preglednica 3-2: Nastavitve parametrov za operaterje DE (RMSE in MANE)

Parameters Settings Description

Maxlt 400 for MANE),1000 for RMSE maximum number of generations
NP [10, 100] In steps 5 initial population number

Upq1 [0.1, 2.0] In steps 0.1 mutation factor

Upy [0.1, 2.0] In steps 0.1 mutation factor

Cr [0.1, 0.9] In steps 0.1 crossover probability

The best outcomes of all five mutation strategies using the mentioned ranges of values are presented in
Table 3-3 and Table 3-4.

Table 3-3: DE mutation strategy evaluation results using MANE
Preglednica 3-3: Rezultati vrednotenja strategije mutacije DE z uporabo MANE

Parameters NP Ur1 Up2 Cr
DE/rand/1 20 0.4 - 0.9
DE /best/1 20 2.0 - 0.7
DE /current —to — best/1 20 0.1 1.7 0.5
DE /best/2 20 0.7 2.0 0.1
DE /rand /2 20 0.2 0.2 0.8

Table 3-4: DE mutation strategy evaluation results using RMSE
Preglednica 3-4: Rezultati vrednotenja strategije mutacije DE z uporabo RMSE

Parameters NP Ur1 Upo Cr
DE /rand /1 30 0.5 - 0.9
DE /best/1 30 2.0 - 0.3
DE /current — to — best/1 30 0.3 1.9 0.8
DE /best/2 30 0.3 0.8 0.4

DE /rand/2 30 0.3 0.3 0.9
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Table 3-5: Parameters selected for DE operators (RMSE and MANE)
Preglednica 3-5: Parametri, izbrani za operaterje DE (RMSE in MANE)

Parameters (RMSE) Parameters (MANE) Description

MaxIt = 1000 MaxlIt =400 maximum number of generations
NP =30 NP =20 initial population number

ur1 =03 Up1 = 0.2 mutation factor

Urz =03 Upz = 0.2 mutation factor

Cr=0.9 Cr=0.8 crossover probability

As illustrated in Figure 3-3 and Figure 3-4, the mutation schema DE /rand /2, (Equation 3.23) using
the parameters listed in Table 3-5 had an outstanding performance with the. This mutation schema
modeled production X" and prices P*; almost identical to the actual or observed data, using multi-

objective functions RMSE and MAN.
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Figure 3-3: MANE values of DE mutation strategies
Slika 3-3: Vrednosti MANE strategij mutacije DE
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Figure 3-4: RMSE values of DE mutation strategies
Slika 3-4: RMSE vrednosti mutacijskih strategij DE
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3.3 Genetic Algorithm

As described in previous sections, GA starts with a randomly selected population of
individuals/candidates, which might be a possible solution to the problem. The solutions are evaluated
using the fitness value of each candidate. Individual fitness represents the suitability of the selected
solution. Then, parents are selected for the reproduction process based on their fitness value. With a
cross-over probability, parents are combined to produce new offspring (children) using the uniform
crossover techniques. Finally, individuals/gens selected based on mutation probability are modified and
ranked according to their fitness through the evaluation process. Although several GA versions have
been developed so far in our case, the GA version coded by Kamel [161] is adapted to our study example

as presented in Algorithm 3-2.

Algorithm 3-2: Calibration of land use model parameters using modified GA algorithm
Initialization
Define Cost Functions [MANE and RMSE]
Generate a random initial population. {xi’0| i =12,.., NP}
For i in range (NP)
#Evaluate Cost function,
fitness = {f(x;¢),i=1,2,..,Np} %%RUN TRANUS
End For
bestingex = arg min (fitness)
bestsol = xpest
bestcost = np.empty(MaxlIt)
Main Loop
For i in range (Maxlt):
# Crossover Operation
For j in range (nCrossover)
Select parents randomly
Generate offspring
#Evaluate cost functions
Cost Evaluation (X", P"j) (%%RUN TRANUS)
Update bestsol
End For
#Mutation Operation
For j in range (nMutation)
Select parents randomly
Create offspring using parents
#Evaluate cost functions
Cost Evaluation (X", P"j) (%%RUN TRANUS)
Update bestsol
#Merge, Sort, and Selection
Population merging
Population sorting
Exclude extra population
Generate new population
#Update best cost
bestcost[it] = bestsol
End For
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3.3.1 Parameter Settings

GA design is limited to balancing crossover and mutation rates [162]. Thus, GA is evaluated over a
general range of crossover probability (Cr) and mutation rates (mu) presented in Table 3-6 for the
example used in this thesis. The best combinations of the GA operators’ values are selected through an
automatic process for RMSE and MANE, listed in Table 3-7.

Table 3-6 Parameters settings for GA operators (RMSE and MANE)
Preglednica 3-6: Nastavitve parametrov za operaterje GA (RMSE in MANE)

Parameters Settings Description

Maxlt 400 for MANE),1000 for RMSE maximum number of generations
NP [10, 100] In steps 5 initial population number

Cr [0.1, 1.0] In steps 0.1 crossover probability

mu [0.1, 1.0] In steps 0.1 mutation rate

Table 3-7: Parameters selected for GA operators (RMSE and MANE)
Preglednica 3-7: Parametri, izbrani za operaterje GA (RMSE in MANE)

Parameters (RMSE) Parameters (MANE) Description

MaxlIter = 1000 Maxlter = 400 maximum number of generations
NP =30 NP =20 initial population number

Cr=1 Cr=1 crossover probability

mu =0.18 mu =0.18 mutation rate

sigma = 0.1 sigma = 0.1 mutation step size

3.4 Particle Swarm Optimization

PSO is a population-based algorithm requiring two elements: search space (a swarm of particles) and
particles (potential solutions). As in DE and GA, PSO also starts with initialization, where a particle
swarm will be generated randomly based on defined parameters and proceeds by calculating the
objective function depending on the position and velocity of each member (particle). Then, the objective
function values are compared to the global objective function values to see which is superior. The best
particle information calculates the new particle velocity and location. The fundamental benefit of PSO
is that at every iteration, information flows between all particles. The particles rely on other data to
arrive at the optimal answer. In our case, we used the PSO version coded by Kamel [161], and it is

adapted to our study example as presented in Algorithm 3-3.
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Algorithm 3-3: Calibration of land use model parameters using modified PSO algorithm

Define Cost Functions [MANE and RMSE]
Set Bounds [VarMin, VarMax|
Gbest = {position: None, cost: np.inf}
PSO Initialization Loop
For i in range (NP)
Initialize the position and velocity of particles randomly
Calculate cost of particles (X";, P*;) (%%RUN TRANUS)

#Update best personal [position, velocity]

If Popli][cost] < Popli][bestcost]
Popli][bestposition]=Popl[i][position];
Pop[i][bestcost]=Popli][cost];

End If

#Update best Global
If Pop[i][bestcost] < Gbest[cost]
Gbest[position]= Pop[i][bestposition]
Gbest[cost]= Popli][bestcost]
End If
End For
#Initialize best cost
bestcost = np.empty(MaxlIter)
PSO Main Loop
For it in range (MaxlIter) %%Stopping criteria)
For i in range (NP)
#Update particles velocity
Popl[i][velocity]
= Popli][velocity] + ¢, * rand
* (Pop[i][bestposition] — Popli][position]) + c,
xrand * (Gbest[position] — Popli][position])
Apply Bounds
Cost Evaluation (X", P*)) (%%RUN TRANUS)
#Update best personal using
If Pop[i][cost] < Pop[i][bestcost]
Popli][bestposition] = Pop[i][position];
Popli][bestcost] = Pop[i][cost];

#Update best Global
If  Popl[i][best] < Gbest[cost]
Gbest[position] = Pop[i][best]
Gbest[cost] = Pop[i][bestcost]
End If
End If
End For
Return bestcost[it] = Gbest[cost]

3.4.1 Parameter Settings

PSO parameters, personal learning coefficient (Cr), population (global) learning coefficient (Cz), and

inertia weight (w) are evaluated over a range of values, as mentioned in Table 3-8. The best combinations

are selected automatically for RMSE and MAN, as presented in Table 3-9.
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Table 3-8: Parameters settings ranges for PSO operators (RMSE and MANE)
Preglednica 3-8: Obmocja nastavitev parametrov za operaterje PSO (RMSE in MANE)

Parameters Settings Description

Maxlt 400 for MANE),1000 for RMSE maximum number of generations
NP [10, 100] In steps 5 initial population number

C [0.1, 2.0] In steps 0.1 personal learning coefficient

C [0.1, 2.0] In steps 0.1 global acceleration coefficient

w [0.1, 1.0] In steps 0.1 inertia weight

Table 3-9: Parameters selected for PSO operators (RMSE and MANE)
Preglednica 3-9: Parametri, izbrani za operaterje PSO (RMSE in MANE)

Parameters (RMSE) Parameters (MANE) Description

MaxIt = 1000 MaxIt =400 maximum number of generations
NP =30 NP =20 initial population number
Ci=15 Cr=12 personal acceleration coefficient
C;=13 C;=12 global acceleration coefficient
w=0.9 w=0.9 inertia weight

3.5 HYBRID Strategy

Combining the operators and varieties of different optimization techniques is known as Hybridization.
It is one of the most effective and efficient strategies to enhance the performance of optimization
strategies. Hybridizations replace some algorithms' weaknesses, such as convergence speed, low
accuracy, and sticking to a solution with the advantages of the other algorithms. In several studies,
hybrid algorithms were tested and showed their effectiveness in solving the most complex optimization
problems [114], [163]-[166].

This study tried to improve the performance of the proposed calibration approach with the two well-
known Hybrid algorithms, PSODE and GADE. In the meantime, utilizing these algorithms further

evaluates the calibration approach proposed and developed in this thesis.

3.5.1 Hybrid PSODE algorithm

PSO and DE are stochastic algorithms far more effective than the gradient descent approach for
achieving the global optimum. On the other hand, by closely examining each of them, some strengths
and weaknesses come out. A hybridization of PSO and DE is implemented to enhance optimization
performance by addressing these limitations and using the advantages of each one. Merging can be done
in each or one of the leading operators of the algorithms, initialization, perturbation, or evaluation and
selection phase, whether it is PSODE (PSO as the base and DE operators are merged in it) or DEPSO
(DE as the base and PSO operators is merged in it).

In this thesis, the PSODE algorithm is utilized in the study example. The version used here is inspired
by the versions presented in [167] and [168].
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Algorithm 3-4: Calibration of land use model parameters using modified PSODE algorithm

Define Cost Functions [MANE and RMSE]

Set Bounds [VarMin, VarMax)

Gbest = {position: None, cost: np.inf}

PSO Initialization Loop

For i in range (NP)

Initialize the position and velocity of particles randomly
Calculate cost of particles (X", P"y) (%%RUN TRANUS)
#Update best personal [position, velocity]

If Popl[i][cost] < Pop[i][bestcost]
Popl[i][bestposition]=Pop[i][position];
Popl[i][bestcost]=Popli][cost];

End If

#Update best Global

If Pop[i][bestcost] < Gbest[cost]

Gbest[position]= Pop[i][bestposition]
Gbest[cost]= Popl[i][bestcost]
End If
End For
#Initialize best cost
bestcost = np.empty(MaxIt)
PSO Main Loop
For it in range (MaxlIt) %%Stopping criteria)
For i in range (NP)
#Start DE
Select randomly
Pr1,6» Pr2,6» Pr3,cr Prac Prsc € [1; Np,replace = False]
#Mutation (generate donor vector)
mutant = pyy g + pr.(Prog — Prac) + tea-(Prag — Prsc)
#Crossover (generate trail vector)
Generate randomly, CR,gnq[0,1) = Tandint[1; k]

If CRranajo1] < Kcr
Popli][position] = mutant
Else
Popli][position] = Gbest[position]
End If
#End DE

#Update particles velocity
Poplil[velocity] = Popl[i][velocity] + c; * rand
* (Popl[i][bestposition] — Popl[i][position]) + c, * rand
* (Gbest[position] — Popli][position])
Apply Bounds
Cost Evaluation (X", P") (%%RUN TRANUS)
#Update best personal using
If Pop[i][cost] < Pop[i][bestcost]
Popli][bestposition] = Pop[i][position];
Pop[i][bestcost] = Popli][cost];

#Update best Global
If  Pop[i][best] < Gbest[cost]
Gbest[position] = Pop[i][best]
Gbest[cost] = Pop[i][bestcost]
End If
End If
End For
Return bestcost[it] = Gbest[cost]
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Like other stochastic algorithms, PSODE starts with initialization because it is PSO-based; all the
processes are the same as PSO, except particle updating, whereby the DE operators “Mutation and
Crossover” are merged into the process. During the mutation stage, random particles are perturbated,
and results are used alongside Gbest for the crossover process. PSO operators take these new particles

and continue the optimization process.

3.5.1.1 Parameter setting

All the five mutation techniques mentioned in section 3.2.4.1 are evaluated over the parameter ranges
listed in Table 3-10 to get the best out of the DE algorithm. Through a semi-automatic evaluation
process, using RMSE and MANE techniques, DE/rand/2 Equation 3.23 as the mutation strategy got the

best results using the parameters listed in Table 3-11.

Table 3-10: Parameters settings range for the PSODE operators (RMSE and MANE)
Preglednica 3-10: Obseg nastavitev parametrov za operaterje PSODE (RMSE in MANE)

Parameters Settings Description

Maxlt 400 for MANE),1000 for RMSE maximum number of generations
NP [10, 100] In steps 5 initial population number

C; [0.1, 2.0] In steps 0.1 personal learning coefficient

C [0.1, 2.0] In steps 0.1 global acceleration coefficient
Ur1 [0.1, 2.0] In steps 0.1 mutation factor

U2 [0.1, 2.0] In steps 0.1 mutation factor

Cr [0.1, 2.0] In steps 0.1 crossover probability

Table 3-11: Parameters selected for PSODE operators (RMSE and MANE)
Preglednica 3-11: Parametri, izbrani za operaterje PSODE (RMSE in MANE)

Parameters (RMSE) Parameters (MANE) Description

MaxIt = 1000 MaxlIt =400 maximum number of generations
NP =30 NP =20 initial population number

C =15 C =12 personal acceleration coefficient
C;=13 C:=12 global acceleration coefficient
w=0.9 w=0.9 inertia weight

Ur1 =0.3 Ugp =0.3 mutation factor

Uz =0.6 Ugz =0.6 mutation factor

Cr=0.8 Cr=0.9 crossover probability

3.5.2 Hybrid GADE algorithm

As mentioned, GA and DE algorithms follow the same operators with minor differences. Since GA
employs steady-state replacement, it executes more quickly than other techniques. Every generation's
worst chromosome gets swapped out for a better one. Regarding reaching the lowest value, DE
occasionally outperforms other methods, and its generation update has substantial results regarding the

generic chromosome of the preceding generation. On the other hand, DE moves more slowly than GA.
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Literature reviews show several more weaknesses and advantages of the GA and DE algorithms, and to
overcome their weaknesses and get the benefits of each one advantage, the researcher proposes the
GADE hybrid algorithm. The version of the GADE hybrid algorithm applied to the study example of
this thesis is inspired by [164]. This application GADE algorithm improves the optimization process
and, in the meantime, gives another evaluation of the proposed calibration approach using the DE
algorithm.

GA algorithm follows its standard process and operation, with the only difference being that the
crossover operation is replaced with the DE algorithm perturbation method, and the GA steps follow the

rest of the process.

3.5.2.1 Parameter setting

The mutation strategies listed in section 3.2.4.1 are evaluated over the parameter ranges listed in Table
3-12 to get the best out of the DE algorithm during the hybridization. This process is facilitated with a
semi-automatic evaluation approach using RMSE and MANE techniques. The evaluation results show

the best outcome with the DE/rand/1 as the mutation strategy using the parameters listed in Table 3-13.

Table 3-12: Parameters settings range for the GADE operators (RMSE and MANE)
Preglednica 3-12: Razpon nastavitev parametrov za operaterje GADE (RMSE in MANE)

Parameters Settings Description

Maxlt 400 for MANE),1000 for RMSE maximum number of generations
NP [10, 100] In steps 5 initial population number

Cr [0.1, 1.0] In steps 0.1 crossover probability

mu [0.1, 1.0] In steps 0.1 mutation rate

Ur1 [0.1, 2.0] In steps 0.1 mutation factor

Uz [0.1, 2.0] In steps 0.1 mutation factor

Table 3-13 Parameters selected for GADE operators (RMSE and MANE)
Preglednica 3-13: Parametri, izbrani za operaterje GADE (RMSE in MANE)

Parameters (RMSE) Parameters (MANE) Description

MaxIt = 1000 Maxlt =400 maximum number of generations
NP =30 NP =20 initial population number

Cr=1 Cr=1 crossover probability

mu =0.18 mu =0.18 mutation rate

Ur1 =0.3 Ugp =0.3 mutation factor

Uz =0.6 Ugz =0.6 mutation factor




50 Skandary, A.H. 2023. Differential Evolution Approach to LUTI model calibration
PhD Th. Ljubljana, UL FGG, Interdisciplinary doctoral study programme Built Environment — Traffic Engineering

Algorithm 3-5: Calibration of land use model parameters using modified GADE algorithm
Initialization
Define Cost Functions [MANE and RMSE]
Generate a random initial population {xi,0| i =1.2,.., NP}
For i in range (NP)
#Evaluate Cost function,
fitness = {f(xi¢),i=1,2,..,Np} %%RUN TRANUS
End For
bestingex = arg min (fitness)
bestsol = xXpest
bestcost = np.empty(Maxlt)
Main Loop
For i in range (MaxlIt):
# Crossover Operation
For j in range (nCrossover)
#Start DE
Select parents randomly
Pr1,6) Pr2,6) Pr3,6» Prac Prs,er € [1; Np, replace = False]
#Mutation (generate donor vector)
Generate offspring

Cl=ppc+ #F1-(Pr2,c - Pr3,c;)
C2 =ppic+ Ilpz-(Pr4,G - Prs,c;)

#End DE

#Evaluate cost functions
Cost Evaluation (X", P"j) (%%RUN TRANUS)
Update bestsol

End For

#Mutation Operation

For j in range (nMutation)
Select parents randomly
Create offspring using parents
#Evaluate cost functions
Cost Evaluation (X", P"j) (%%RUN TRANUS)
Update bestsol

#Merge, Sort, and Selection
Population merging
Population sorting
Exclude extra population
Generate new population

#Update the best cost
bestcost[it] = bestsol
End For
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3.6 Proposed Calibration Approach Flowchart and GUI

In the proposed methodology, as seen in the optimization process Flow-Chart of Figure 3-5, the total
number of iterations (Maxl/ter) and the total number of populations (NVP) are equally shared by DE, GA,
PSO, PSODE and GADE algorithms to have a proper evaluation. To implement the iteration steps of
the proposed flow chart, all mentioned algorithms are coded in Python, and the TRANUS land-use
model (Example C, given by the TRANUS tutorial) is used as a case study to test the proposed
calibration approach. After the implementation of the sensitivity, the proposed optimization techniques
are performed to calibrate the desired economic parameters (Output of sensitivity analysis) alongside
the shadow prices (price-correcting additive variables). Root Mean Square Error (RMSE) and Mean
Absolute Normalized Error (MANE) have been employed as standard statistical metrics to measure the
goodness of the proposed models. In this work, two stopping criteria for the proposed optimization
techniques are defined: (1) if RMSE or MANE values were repeated more than n-times (Convergence
check value = 40) or (2) if the difference between the current MANE or RMSE value and the average
FITNESS value was less than 0.000001 (techniques precision value).

A graphical user interface (GUI) is created to prevent confusion over the code's content and desired
calibration techniques and inputs (see Figure 3-6). The offered GUI makes it easier for the user to
complete the calibration procedure and allows users to pick their chosen models, optimization measures,

and optimization algorithms easily.
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Figure 3-5: Calibration Approach Flow-Chart
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4 RESULTS AND DISCUSSION

Let us consider an area with N sectors and M zones. Productions and prices are provided as observable
data for a specific base year. The set of observed productions and price data were denoted by X*°¢ €
RN*M and P4t € RN*M Respectively. The proposed calibration approach developed in this thesis is
tested using data from example C of the TRANUS tutorial. The region defined in this example was
divided into three geographical zones (j = 1, 2, 3) and five economic sectors (n,m =1, 2, 3,4,5). The
economic sectors include essential employment, service employment, low-income households, high-
income households, and land. Table 4-1 and Table 4-2 present the TRANUS default values of the
selected parameters against their optimized values using the DE, GA, PSO, PSODE, and GADE

algorithms as the optimization techniques and RMSE and MANE as multi-objective functions. Selected

parameters are bounded based on the highest and lowest TRANUS default values as follows:
0" =(0.000001, 0.00001), 2" (0, 1), and A"; = (-100, 0).

Table 4-1: Optimized values using the DE, GA, and PSO algorithms against TRANUS defaults.
Preglednica 4-1: Optimizirane vrednosti z uporabo DE, GA in PSO glede na privzete vrednosti TRANUS.

Parameter TRANUS DERrwmsE DEwmanNE GARMSE GAMANE PSOrmse PSOwmane
hly 0.00 -15.29 -53.40 -32.09 -44.06 -40.47 -18.46
h? -50.11 -78.08 -66.34 -92.52 -62.62 -35.60 -46.70
h3; -34.64 -28.85 -17.49 -1.03 -41.44 0.00 -35.56
h* -27.74 -15.03 -11.98 -58.65 0.00 -33.40 0.00
h%; -8.10 -7.33 -16.73 -100.00 -29.06 0.00 -0.58
h!, 0.00 -37.53 -66.47 -0.05 -0.06 -15.44 -100.00
h?, -36.92 -46.13 -35.40 -55.88 -49.01 -18.04 -12.19
h3, -61.00 -52.42 -53.52 -9.73 -72.33 -43.02 -72.29
h*, -65.69 -83.32 -58.24 -93.44 -35.92 -68.64 -69.88
h3, -23.18 -10.04 -26.81 -100.00 -42.34 -22.32 -44.06
h!; 0.00 -9.62 -12.44 -30.61 -48.42 -3.10 -22.14
h?; -34.40 -59.94 -32.94 -17.81 -46.11 -7.45 -10.96
h3; -60.04 -49.63 -51.53 -11.33 -66.47 -37.25 -67.93
h*; -52.84 -65.68 -42.34 -91.79 -21.17 -47.41 -50.74
h3; -22.27 -21.71 -32.13 -42.14 -32.59 -0.07 -43.55
o1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
o921 0.0 0.00000754 | 0.00000454 @ 0.00000126 | 0.00000953 | 0.00000332 | 0.00000133
631 0.0 0.00000217 | 0.00000344 | 0.00000872 0.00001 0.00000130 | 0.00000551
841 0.0 0.00000955 | 0.00000383 0.000001 0.000001 0.00000963 0.000001
85! 0.000007 0.00000858 | 0.00000873 0.000001 0.00001 0.00000532 0.0000039
o512 0.0 0.00000591 0.00000779 0.000001 0.00001 0.00000943 0.000008
622 0.0 0.0 0.0 0.0 0.0 0.0 0.0
§32 0.0 0.00000666 | 0.00000908 0.000001 0.00001 0.00000908 | 0.00000912
64 0.0 0.00000285 | 0.00000881 0.00001 0.00000954 0.000001 0.00000763
8% 0.000008 0.00000720 | 0.00000876 0.00001 0.00001 0.00000910 | 0.00000998
o1 0.0 0.00000444 | 0.00000553 0.000001 0.00001 0.00000851 0.00001
523 0.0 0.00000767 | 0.00000347 @ 0.00000825 0.00001 0.000001 0.00000863
63 0.0 0.0 0.0 0.0 0.0 0.0 0.0
54 0.0 0.00000304 = 0.00000139 0.000001 0.00001 0.00000222 0.000001
83 0.000007 0.00000542 | 0.00000731 0.00001 0.00001 0.00001 0.00001
oM 0.0 0.00000497 | 0.00000929 = 0.00000224 0.00001 0.00001 0.00001
o 0.0 0.00000265 | 0.00000539 | 0.00000296 0.00001 0.00000554 0.00001
§ 34 0.0 0.00000657 | 0.00000826 0.00001 0.00001 0.00000466 0.000001
o4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
&% 0.000006 0.00000679 | 0.00000754 | 0.00000984 | 0.00000632 | 0.00000333 | 0.00000879
o3 0.0 0.00000723 | 0.00000757 | 0.00000621 0.000010 0.000001 0.000001
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8% 0.0 0.00000175 | 0.00000627 | 0.00000288 | 0.00000848 0.000001 0.00001
83 0.0 0.00000306 | 0.00000591 0.000001 0.000010 0.000001 0.000001
84 0.0 0.00000341 | 0.00000618 0.000001 0.00000888 | 0.00000780 | 0.00000846
858 0.0 0.0 0.0 0.0 0.0 0.0 0.0

N 1 0.4024 0.4172 1.0 0.0 0.16 0.96

)2 1 0.3328 0.793 0.750 1.0 0.33 0.35

23 1 0.9735 0.7577 0.125 0.94 1.0 0.85

5 1 0.5220 0.7063 0.588 1.0 0.77 0.60

IS 1 0.9752 0.8227 0.760 1.0 1.0 1.0

Table 4-2: Optimized values using the DE, PSODE, and GADE algorithms against TRANUS defaults
Preglednica 4-2: Optimizirane vrednosti z uporabo algoritmov DE, PSODE in GADE glede na privzete vrednosti

TRANUS

Parameter TRANUS DERMSE DEMANE PSODERMSE PSODEMANE GADERMSE GADEMANE
h!, 0.00 -15.29 -53.40 -79.79 -93.96 -57.74 -45.35
h? -50.11 -78.08 -66.34 -35.70 -25.79 -58.93 -72.80
h3 -34.64 -28.85 -17.49 -0.52 -0.39 -25.71 -42.58
h*, -27.74 -15.03 -11.98 -1.23 -1.06 -60.01 -39.49
h5, -8.10 -7.33 -16.73 -100.00 -8.89 -100.00 -20.73
h!, 0.00 -37.53 -66.47 -73.28 0.00 -99.44 -57.35
h?, -36.92 -46.13 -35.40 -3.87 -4.21 -42.25 -19.54
h3, -61.00 -52.42 -53.52 -13.90 -22.43 -56.14 -78.86
h*, -65.69 -83.32 -58.24 -14.15 -39.52 -83.16 -93.89
h3, -23.18 -10.04 -26.81 -100.00 -1.86 -100.00 -44.44
h'; 0.00 -9.62 -12.44 -98.79 -58.38 -88.34 -56.53
h?; -34.40 -59.94 -32.94 -2.19 -1.22 -44.62 -19.88
h3; -60.04 -49.63 -51.53 -21.39 -25.36 -54.56 -72.78
h*; -52.84 -65.68 -42.34 -8.67 -23.99 -75.23 -83.49
h3; -22.27 -21.71 -32.13 -100.00 -0.04 -100.00 -44.05
ou 0.0 0.0 0.0 0.0 0.0 0.0 0.0
o4 0.0 0.00000754 | 0.00000454 0.00000580 0.00000861 0.00000604 | 0.00000190
831 0.0 0.00000217 | 0.00000344 0.00000949 0.00000145 0.00001000 | 0.00000917
o4 0.0 0.00000955 @ 0.00000383 0.00000989 0.00000954 0.00000100 | 0.00000190
83! 0.000007 0.00000858 | 0.00000873 0.00000482 0.00001 0.00000559 | 0.00000999
812 0.0 0.00000591 | 0.00000779 0.00000104 0.00000966 0.00001000 | 0.00000899
522 0.0 0.0 0.0 0.0 0.0 0.0 0.0
532 0.0 0.00000666 | 0.00000908 0.00000760 0.00000261 0.00000460 | 0.00000910
542 0.0 0.00000285 | 0.00000881 0.00000708 0.00000100 0.00000640 | 0.00000251
52 0.000008 0.00000720 | 0.00000876 0.000001 0.00000927 0.00000476 | 0.00000549
613 0.0 0.00000444 | 0.00000553 0.00000180 0.00000107 0.00000619 | 0.00000100
8% 0.0 0.00000767 | 0.00000347 0.00000192 0.00000134 0.00000100 | 0.00000651
533 0.0 0.0 0.0 0.0 0.0 0.0 0.0
84 0.0 0.00000304 | 0.00000139 0.00000285 0.00000532 0.00001000 | 0.00000977
83 0.000007 0.00000542 | 0.00000731 0.00000942 0.00000538 0.00000471 | 0.00000999
ol 0.0 0.00000497 | 0.00000929 0.00000993 0.00000100 0.00000125 | 0.00000417
i 0.0 0.00000265 | 0.00000539 0.00000551 0.00000554 0.00000100 | 0.00000190
534 0.0 0.00000657 | 0.00000826 0.00000580 0.00000422 0.00000100 | 0.00000217
o4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
&% 0.000006 | 0.00000679 | 0.00000754 0.00000698 0.00000457 0.00001000 | 0.00000871
815 0.0 0.00000723 | 0.00000757 0.00000198 0.00000235 0.00000976 | 0.00000206
8% 0.0 0.00000175 | 0.00000627 0.00000804 0.00000249 0.00000871 | 0.00000100
83 0.0 0.00000306 | 0.00000591 0.00000222 0.00000951 0.00000290 | 0.00000759
84 0.0 0.00000341 | 0.00000618 0.00000914 0.00000999 0.00000936 | 0.00000918
85 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M 1 0.4024 0.4172 0.26 0.04 0.83 0.83
A2 1 0.3328 0.793 0.28 1.00 0.99 0.18
A3 1 0.9735 0.7577 0.58 0.91 0.47 0.79
A 1 0.5220 0.7063 0.92 0.89 0.98 0.66
AS 1 0.9752 0.8227 0.45 0.97 0.92 0.99




Skandary, A.H. 2023. Differential Evolution Approach to LUTI model calibration 55
PhD Th. Ljubljana, UL FGG, Interdisciplinary doctoral study programme Built Environment — Traffic Engineering

The calibrated values of the parameters presented in Table 4-1 and Table 4-2 show that using GA and
PSO detect lower or upper bounds of the parameters as the optimum results, such as GAruse (h’ = h%
=-100), GAmane ( h*1 =0.00, 8% =0.00001, §* =0.000001, 8°; = 0.0001) and PSOwmaxe (h*; = 0.00,
h', =-100.00, §* = 0.000001, 55 =0.00001, §'s = 0.00001), PSOruse (h*; = 0.00, & ** = 0.000001, 5> =
8'*=0.00001, 1’ = 1°> = 1.0) so they were not able to improve MANE and RMSE values further. While
these sticking values are not seen using the DE algorithm with MANE and RMSE, the model
continuously improves the parameter value. A further improvement on GA and PSO algorithms, using
hybrid GADE and PSODE methods, is also helping to improve the calibration approach as shown in
Table 4-2, where the number of sucking values is minimum than GA and PSO presented in Table 4-1.
The effect of these sticking to upper and lower range boundaries can also be visible with the modeled
values of the Production and Prices that are presented in the following tables, where the modeled and
observed data are compared.

The evolution of MANE and RMSE values using DE, GA, PSO, PSODE, and GADE optimizations are
depicted in Figure 4-1 and Figure 4-2, in which their best-cost values are shown using colored lines

according to the legend details.

CALIBRARATION RESULTS (MANE)
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GA _BestCost 0.03675
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Figure 4-1: MANE values of DE, GA, PSO, PSODE, and GADE optimizations
Slika 4-1: Vrednosti MANE optimizacij DE, GA, PSO, PSODE in GADE

Figure 4-1 clearly shows that the DE algorithm outperformed the GA and PSO algorithms and the
Hybrid of GADE and PSODE algorithms. Using the DE algorithm as an optimization method, the
MANE value almost reached zero, while MANE values obtained using GA, PSO GADE, and PSODE
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were 0.00044, 0.0001, 0.00028, and 0.00005, respectively. Using hybrid algorithms shows a significant
improvement in GA and PSO, while the DE algorithm still has an outstanding performance.

All algorithms started with a similar MANE value. Although PSO reached its optimum value sooner
(after only 110 iterations), it could not improve it more, while all other algorithms proceeded to improve
MANE values. DE and GA algorithms reached their optimum MANE values after 350 and 400
iterations. GADE is after 400 iterations, and PSODE is after 380 iterations.

Based on the MANE multi-objective function (price and production) values, the DE algorithm produced
the best results and outperformed all the other algorithms. However, in terms of speed, PSO algorithms

have the fastest convergence and outperform their competitors.

CALIBRARATION RESULTS (RMSE)
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Figure 4-2: RMSE values of DE, GA, PSO, PSODE, and GADE optimizations
Slika 4-2: RMSE vrednosti optimizacij DE, GA, PSO, PSODE in GADE

Figure 4-2 shows that the best RMSE value was obtained by the DE algorithm with a value of 168.
However, neither GA nor PSO could conclude that the RMSE values were less than 280 and 458,
respectively. Using hybrid algorithms, both GADE and PSODE significantly improve the RMSE cost
values, with the same value of 52.5084. Here again, all three optimization techniques started with a
similar RMSE value. However, PSO stopped improving before 100 iterations, while GA and DE
continuously improved RMSE values and ended almost 1000 iterations.

The outstanding performances of the hybrid algorithms do not guarantee that they also have significant
parameters’ modeled values. The comparisons of the modeled values against the observed ones prove
that, despite the outstanding performance of the hybrid algorithms (GADE and PSODE), reaching the

minimum RMSE values, the Production and Prices modeled values are not close enough to the Observed
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ones, as it is obtained using DE algorithm. The consistency of the calibration algorithm provided here
is demonstrated. Because the DE estimator employing both MANE and RMSE is asymptotically
efficient, the estimate becomes closer to the actual solution as the number of iterations increases, as seen
in Figure 4-1 and Figure 4-2. Furthermore, the optimal cost values were continually reduced by the DE
technique. In addition, DE discovered better solutions almost in every iteration. As a result, we can state
that the proposed calibration technique can reliably estimate the land-use characteristics. The calibration
results of multi-objective functions (prices and productions) for DE, GA, PSO, hybrid GADE, and
PSODE optimization techniques are presented in Table 4-3, Table 4-4, Table 4-5, Table 4-6, and Table
4-7, respectively. The TRANUS results are referred to as land-use (observed) data proposed by
TRANUS, and MANE-based and RMSE-based values are referred to as values obtained by the
calibration model using DE, GA, and PSO algorithms. Mod. /Obs. The ratio is also referred to as
modeled values obtained by MANE and RMSE compared to the observed value given by TRANUS.
Mod. /Ob. the ratio of productions (X"j) and prices (P?f) using the DE algorithm as calibration technique
while MANE and RMSE as objective functions are presented in Figure 4-3.

- @ -+ Modeld using MANE -« +@ -+ Modeld using RMSE
e
P53 ‘% X21
P43 X31
'l
°2
P33 o X1
<
P23 _f,,c-"o’w::;:.___ X51
" G‘:P e,
R (% L}
P13 & . X12
0 [
% N .
P52 ‘:-.’ ‘?70 ' %22
¢ Y
.’: 0‘90 .u_'
P42 .‘ X32
0
% i
P32 ‘ *® X42
8 ;
%% i
P22 ; / X52
f )
s
P12 X13
L} \.'-."' """"" ®
- .o
P51 g X23
P41 X33
P31 X43
P21 X53

P11

Figure 4-3: Mod./Ob. the ratio of Production and Prices using DE
Slika 4-3: Mod./Ob. razmerje med proizvodnjo in cenami z uporabo DE
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Table 4-3: Observed prices and productions vs. model values using the DE algorithm.

Preglednica 4-3: Opazovane cene in produkcije v primerjavi z vrednostmi modelov z uporabo algoritma DE

Parameter | Observed | Model using MANE | Mod. /Ob. | Model using RMSE | Mod. /Ob.
XY 5.000 5.000,00 1,00 5.000,00 1,00
X% 3.500 3.500,00 1,00 3.345,14 0,96
X3 4.000 4.000,00 1,00 4.003,45 1,00
X4 1.500 1.500,00 1,00 1.505,91 1,00
X3 066 66,00 1,00 66,00 1,00
X', 800 800,00 1,00 800,00 1,00
X% 700 700,00 1,00 644,29 0,92
X% 13.000 13.000,00 1,00 13.124,86 1,01
X4 3.000 3.000,00 1,00 2.936,47 0,98
X3 110 110,00 1,00 110,00 1,00
X's 1.100 1.100,00 1,00 1.100,00 1,00
X2 900 900,00 1,00 1.110,58 1,23
X33 5.000 5.000,00 1,00 4.871,68 0,97
X4 11.500 11.500,00 1,00 11.557,62 1,01
X5 128 128,00 1,00 128,00 1,00
P! 14.546 14.506,38 1,00 14.370,79 0,99
P? 14.191 14.195,38 1,00 14.122,73 0,99
P 2.705 2.769,40 1,02 2.835,52 1,02
P4 3.862 3.840,60 0,99 3.815,62 0,99
P3 250.000 250.000,18 1,00 249.942,40 1,00
P 11.973 11.875,61 0,99 11.299,58 0,95
P 11.714 11.642,09 0,99 11.018,42 0,95
P 2.447 2.446,64 1,00 2.429,64 0,99
P% 3.341 3.289,97 0,98 3.215,25 0,98
P> 120.000 120.000,05 1,00 120.364,69 1,00
P'3 12.197 12.166,74 1,00 11.916,16 0,98
P 11.703 11.710,39 1,00 11.493,34 0,98
P33 2.644 2.677,51 1,01 2.675,75 1,00
P% 3.693 3.656,64 0,99 3.571,54 0,98
P 180.000 180.000,03 1,00 180.126,83 1,00

The outstanding performance of the DE algorithm using MANE as the objective function is proved by
the results presented in Table 4-3 and Figure 4-3. Using the MANE objective function, the DE calibration
technique enables us to reach the observed production values without any error and observed price
values with a slight difference, whereas the variation of the results Mod. /Obs. ratios came to between
P*=10.98 and P*;=1.02. However, the DE calibration technique using the RMSE objective function can

model the observed price and production values with a slightly higher discrepancy, with results variation
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ratios between X, = 0.92 and P°;=1.02. Only the parameter (X*;) was not modeled properly as its Mod.
/Obs. ratio is 1.23.

As seen in Table 4-4 and Figure 4-4, the GA calibration technique using the MANE objective function
precisely modeled the observed production values. In contrast, price values slightly differed with a
variation ratio between X°; =0.98 and P°; = 1.05. However, the GA calibration technique using the
RMSE objective function had a significant discrepancy, where the variations of the results were between
X?; = 0.78 and X°; =1.91. These results indicate the deficiency of the GA calibration technique using
RMSE objective functions.

Table 4-4: Observed prices and productions vs. model values using the GA algorithm.
Preglednica 4-4: Opazovane cene in produkcije v primerjavi z vrednostmi modelov z uporabo algoritma GA

Parameter | Observed | Model using MANE | Mod. /Ob. | Model using RMSE | Mod. /Ob.
XY 5.000 5.000,00 1,00 5.000,00 1,00
X% 3.500 3.498,39 1,00 3.344,03 0,96
X3 4.000 3.902,24 0,98 3.925,01 1,01
X4 1.500 1.580,20 1,05 1.232,91 0,78
X5 066 66,00 1,00 126,29 1,91
X" 800 800,00 1,00 800,00 1,00
X% 700 700,24 1,00 948,97 1,36
X* 13.000 13.121,71 1,01 12.881,36 0,98
X4 3.000 2.987,37 1,00 2.908,93 0,97
X% 110 110,00 1,00 154,50 1,40
X'3 1.100 1.100,00 1,00 1.100,00 1,00
X2 900 901,37 1,00 806,99 0,90
X33 5.000 4.976,05 1,00 5.193,63 1,04
X4 11.500 11.432,44 0,99 11.858,16 1,04
X5 128 128,00 1,00 128,00 1,00
P 14.546 14.670,09 1,01 17.684,01 1,21
P% 14.191 14.356,46 1,01 17.241,20 1,20
P 2.705 2.762,40 1,02 4.113,98 1,49
P4 3.862 3.920,03 1,02 5.692,39 1,45
P 250.000 261.486,92 1,05 250.000,00 0,96
P 11.973 12.091,49 1,01 13.801,88 1,14
P% 11.714 11.921,34 1,02 13.383,06 1,12
P 2.447 2.469,73 1,01 2.966,45 1,20
P% 3.341 3.357,30 1,01 3.995,44 1,19
P> 120.000 120.998,30 1,01 120.000,00 0,99
P 12.197 12.306,26 1,01 14.000,72 1,14
P 11.703 11.877,96 1,01 12.778,78 1,08
P 2.644 2.674,38 1,01 2.895,27 1,08
P 3.693 3.710,30 1,00 3.948,53 1,06
P33 180.000 179.726,42 1,00 181.233,79 1,01
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Mod. /Ob. the ratio of productions (X"j) and prices (P") using hybrid GA algorithm as calibration
technique while MANE and RMSE as objective functions are presented in Figure 4-4.
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Figure 4-4: Mod./Ob. the ratio of Production and Prices using GA
Slika 4-4: Mod./Ob. razmerje med proizvodnjo in cenami z uporabo GA

Table 4-5: Observed prices and productions vs. model values using the PSO algorithm.
Preglednica 4-5: Opazovane cene in produkcije v primerjavi z vrednostmi modelov z uporabo algoritma PSO

Parameter | Observed | Model using MANE | Mod. /Ob. | Model using RMSE | Mod. /Ob.
x4 5.000 5.000,00 1,00 5.000,00 1,00
X% 3.500 3.499,99 1,00 3.308,86 0,95
X3 4.000 4.000,76 1,00 3.513,84 0,88
X4 1.500 1.500,00 1,00 1.754,36 1,17
X5 066 66,00 1,00 66,00 1,00
X' 800 800,00 1,00 800,00 1,00
X% 700 700,00 1,00 829,76 1,19
X% 13.000 12.999,81 1,00 13.531,57 1,04
X4 3.000 2.999,98 1,00 3.160,15 1,05
X% 110 110,00 1,00 110,00 1,00
X' 1.100 1.100,00 1,00 1.100,00 1,00
X% 900 900,01 1,00 961,38 1,07
X% 5.000 4.999,43 1,00 4.954,58 0,99
X4 11.500 11.500,03 1,00 11.085,50 0,96
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X 128 128,00 1,00 128,00 1,00
PY 14.546 14.459,62 0,99 14.431,80 0,99
P 14.191 13.734,56 0,97 13.971,27 0,98
P’ 2.705 2.517,07 0,93 2.533,63 0,94
P4 3.862 3.564,76 0,92 4.153,04 1,08
P5 250.000 250.001,69 1,00 250.000,00 1,00
P" 11.973 11.564,76 0,97 11.690,30 0,98
P% 11.714 11.138,65 0,95 11.378,38 0,97
P 2.447 2.378,41 0,97 2.315,10 0,95
P* 3.341 3.245,70 0,97 3.405,31 1,02
P5 120.000 120.001,82 1,00 120.000,00 1,00
Pl 12.197 12.134,86 0,99 11.993,28 0,98
P% 11.703 11.363,51 0,97 11.433,90 0,98
P 2.644 2.570,76 0,97 2.405,07 0,91
P4 3.693 3.587,16 0,97 3.778,45 1,02
P 180.000 180.003,26 1,00 180.000,00 1,00

Mod. /Ob. ratio of productions (X"j) and prices (P"j) using hybrid PSO algorithm as calibration
technique while MANE and RMSE as objective functions are presented in Figure 4-5.
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Figure 4-5: Mod./Ob. ratio of Production and Prices using PSO
Slika 4-5: Mod./Ob. razmerje med proizvodnjo in cenami z uporabo PSO
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Considering the results presented in Table 4-5 and Figure 4-5, like both DE and GA results, the PSO
calibration technique using the MANE objective function outperformed the PSO calibration technique
using the RMSE objective function to model the observed data and utilizing MANE as an objective
function the Mod. /Obs. The ratio ranges between P*;=0.92 and 1.0, while utilizing RMSE has a higher
error, varied between X°;= 0.88 and X?,= 1.19.

Table 4-6: Observed prices and productions vs model values using the PSODE algorithm
Preglednica 4-6: Opazovane cene in produkcije v primerjavi z vrednostmi modelov z uporabo algoritma PSODE

Parameter | Observed | Model using MANE | Mod. /Ob. | Model using RMSE | Mod. /Ob.
XY 5.000 5.000,00 1,00 5.000,00 1,00
X2 3.500 3.500,02 1,00 3.503,27 1,00
X3 4.000 3.999,87 1,00 4.000,45 1,00
X4 1.500 1.500,00 1,00 1.500,16 1,00
X5 066 66,00 1,00 131,53 1,99
X', 800 800,00 1,00 800,00 1,00
X% 700 699,98 1,00 700,15 1,00
X3 13.000 13.000,07 1,00 13.000,40 1,00
X4 3.000 2.999,94 1,00 3.000,36 1,00
X5 110 110,00 1,00 154,31 1,40
X's 1.100 1.100,00 1,00 1.100,00 1,00
X2 900 899,99 1,00 896,58 1,00
X33 5.000 5.000,06 1,00 4.999,16 1,00
X4 11.500 11.500,07 1,00 11.499,49 1,00
X5 128 128,00 1,00 197,06 1,54
P 14.546 14.618,71 1,01 19.777,10 1,36
P% 14.191 14.344,00 1,01 19.352,84 1,36
P 2.705 2.853,27 1,05 4.318,38 1,60
P4 3.862 4.081,90 1,06 5.952,72 1,54
P’ 250.000 250.027,51 1,00 250.000,00 1,00
P 11.973 12.206,26 1,02 16.426,90 1,37
P% 11.714 11.999,85 1,02 16.126,53 1,38
P 2.447 2.479,20 1,01 3.325,98 1,36
P 3.341 3.384,30 1,01 4.453,35 1,33
P> 120.000 120.030,98 1,00 120.000,00 1,00
P'; 12.197 12.211,17 1,00 16.927,34 1,39
P 11.703 11.789,83 1,01 16.371,01 1,40
P’ 2.644 2.678,16 1,01 3.798,96 1,44
P 3.693 3.742,81 1,01 5.164,40 1,40
P> 180.000 180.015,74 1,00 180.000,00 1,00
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Mod. /Ob. ratio of productions (X"j) and prices (P") using hybrid PSODE algorithm as calibration
technique while MANE and RMSE as objective functions are presented in Figure 4-6.
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Figure 4-6: Mod./Ob. Ratio of Production and Prices using PSODE
Slika 4-6: Mod./Ob. razmerje med proizvodnjo in cenami z uporabo PSODE

The results presented in Table 4-6 and Figure 4-6 demonstrate the actual data of TRANUS and the
modeled data of the PSODE algorithm using both MANE and RMSE for the Production and Prices. The
parameter results show that the model has done a reasonably good job of predicting most of the actual
data, as the parameter values using both MANE and RMSE are relatively close to the actual values.
However, for some parameters like X°; and X°;, P;, and P?;,the RMSE values are much higher than the
actual values, indicating that the model cannot predict these values accurately. Furthermore, the results
suggest that most of the values are very close to the actual ones; using MANE as a multi-objective
function demonstrates that the model has accurately predicted these values. In summary, while the
model has reasonably predicted most of the actual values using MANE, it may require further calibration

to improve its accuracy, especially for some parameters with higher RMSE values.
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Table 4-7: Observed prices and productions vs model values using the GADE algorithm

Preglednica 4-7: Opazovane cene in produkcije v primerjavi z vrednostmi modelov z uporabo algoritma GADE

Parameter | Observed | Model using MANE | Mod. /Ob. | Model using RMSE | Mod. /Ob.
XY 5.000 5.000,00 1,00 5.000,00 1,00
X% 3.500 3.499,93 1,00 3.499,57 1,00
X3 4.000 4.000,10 1,00 3.999,83 1,00
X4 1.500 1.500,60 1,00 1.499,93 1,00
X3 066 66,00 1,00 131,49 1,99
X', 800 800,00 1,00 800,00 1,00
X% 700 700,03 1,00 700,61 1,00
X* 13.000 12.999,68 1,00 13.000,35 1,00
X4 3.000 2.999,39 1,00 3.000,41 1,00
X3 110 110,00 1,00 154,31 1,40
X's 1.100 1.100,00 1,00 1.100,00 1,00
X2 900 900,04 1,00 899,82 1,00
X33 5.000 5.000,22 1,00 4.999,81 1,00
X4 11.500 11.500,01 1,00 11.499,66 1,00
X5 128 128,00 1,00 197,09 1,54
P! 14.546 14.359,44 0,99 19.719,38 1,36
P 14.191 14.367,74 1,01 19.299,61 1,36
P 2.705 2.681,52 0,99 4.283,82 1,58
P4 3.862 3.802,20 0,98 5.908,71 1,53
P3 250.000 249.964,66 1,00 250.000,00 1,00
P 11.973 11.174,17 0,93 15.547,04 1,30
P 11.714 11.006,89 0,94 15.203,59 1,30
P 2.447 2.421,56 0,99 3.304,52 1,35
P% 3.341 3.303,14 0,99 4.426,01 1,32
P> 120.000 120.023,31 1,00 120.000,00 1,00
P'3 12.197 11.924,02 0,98 16.700,12 1,37
P 11.703 11.695,08 1,00 16.135,52 1,38
P33 2.644 2.624,30 0,99 3.779,01 1,43
P% 3.693 3.659,85 0,99 5.139,00 1,39
P’ 180.000 180.029,22 1,00 180.000,00 1,00
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Figure 4-7 presents the ratio of modeled values of productions (X"j) and prices (P"f) using the hybrid
GADE algorithm as a calibration method, while MANE and RMSE are objective functions.
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Figure 4-7: Mod./Ob. ratio of Production and Prices using GADE
Slika 4-7: Mod./Ob. razmerje med proizvodnjo in cenami z uporabo GADE

Based on the comparison of results presented in Table 4-7 and Figure 4-7, it is evident that utilizing
MANE in the hybrid GADE model generally yields superior outcomes compared to using the RMSE.
The MANE values for all parameters consistently demonstrate lower values than the corresponding
RMSE values, indicating a better alignment between the GADE model and the TRANUS data.

GADE employing MANE exhibits a significant improvement in fitting the TRANUS results, suggesting
its capability to capture overall trends and patterns within the data. Conversely, GADE utilizing RMSE
tends to exhibit more significant errors, indicating a poorer fit to the actual data. This discrepancy may
arise from RMSE's sensitivity to outliers and more significant deviations from the actual data, potentially
leading to overfitting of the GADE model.

In summary, while GADE with MANE appears to provide a better fit to the TRANUS data compared
to GADE with RMSE, it is crucial to exercise caution and comprehensively evaluate both models'

performance before drawing any definitive conclusions.
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The technique of creating a new population of solutions by perturbing solutions from the prior
population is one of the critical distinctions between the three algorithms described above. The GA
algorithm chooses the parents based on probabilities that favor a physically fit individual. The crossover
operation creates offspring with pieces from both parents, and the solutions are more likely to be similar
to the parents. Finally, the mutation process, which injects some discrepancy into the solutions
occasionally, is how GA achieves its diversity. In the PSO algorithm, as the new swarm of particles is
produced via the updates of the positions and velocity of each old individual, it can be said with
confidence that they are much different from the old ones. The PSO algorithm converged so quickly, as
the findings showed, due to the one-way influence of the best particle in the swarm over all other
solutions in the population. This process limited the solution candidates and prevented further
improvements. The DE algorithm improved the finding of new answers by ensuring that the best solution
did not influence the other solutions in the population. In addition, the mutated vector was always a
solution that did not come from the original population; therefore, the crossover operation in DE always
took place between a population solution and a newly generated one. The further improvement of the
DE algorithm was led by this process, unlike both PSO and GA algorithms, as the findings of this study
show.

A laptop carried out the proposed calibration techniques with the following specifications: Lenovo
ThinkPad T440s, CPU: Intel(R) Core TM i7-4600U @ 2.10GHz with 2 Core(s) and 4 Logical
Processor(s), and RAM: 8.00 GB, and a 64-bit Operating System Winl0. The DE, GA, PSO, HYBRID
PSODE, and HYBRID GA calibration methods using MANE conclude the calibration process in 64.1,
45.4, 40.2, 55, and 59.5 seconds respectively, while using RMSE needed 102.7, 79.5, 51.2, 68,4 and

94,6 seconds respectively.
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S  CONCLUSION AND FUTURE WORK

5.1 Conclusions

LUTI models require careful calibration to ensure their accuracy and reliability. Different calibration
methods can be used to improve the accuracy of the model. Each method has its strengths and
weaknesses, and the choice of calibration method depends on the nature of the problem and the data
available. It is important to note that the calibration of LUTI models is an iterative process that requires
multiple rounds of testing and refinement to achieve the desired level of accuracy. Overall, successful
calibration is crucial for its effective use in urban planning and policymaking.

According to the literature reviewed, most of the existing LUTI calibration methods are semi-automated,
using single-objective functions and local estimation techniques, and they suffer from the lack of a
global estimation process. There is no standard approach to calibrating LUTI models or consensus on
which objective function to use. However, their complexity makes the calibration of these tools costly,
time-consuming, and challenging. To address these existing limitations, a novel LUTI model calibration
technique benefiting from the capability of the differential evolution algorithm is presented in this study.
This study is a step forward in developing a global and automated calibration approach for the LUTI
models, which was the objective of prior investigations. By reformulating the TRANUS land use and
activity module to make the calibration process more straightforward, we have contributed to this thesis.
To accomplish this reformulation, we had to present the equations used in the computation of the land
use and activity model module, utilizing the fundamental mathematical concepts underlying the
microeconomic models employed and creating the necessary objective function using MANE and
RMSE for the success of the optimization algorithms. First, the land-use model's most important
parameters (elasticities, price factors, and shadow prices) were obtained through sensitivity analysis.
Then, a DE algorithm was used to calibrate these parameters simultaneously to reach a global minimum
using MANE and RMSE as multi-objective functions of both productions (X"j) and prices (P"j). The
sensitivity analysis and the suggested calibration technique were tested on data from example C of the
TRANUS model, and to be able to test our optimization approach, two optimization techniques (GA
and PSO) and, further, the hybrid of GADE and PSODE were utilized to test the performance of this
thesis proposed calibration approach using DE algorithm, with the usage of the same objective function
method (MANE and RMSE).

Here is the summary of the research findings:

i.  In terms of modeling the observed data, the calibration approach developed in this study using
the DE algorithm demonstrated superior performance compared to both PSO and GA algorithms
and the implemented version of the hybrid GADE and PSODE optimization techniques. The
assessment was based on utilizing MANE and RMSE as multi-objective functions.

ii.  DE-based optimization enables the incorporation of multiple parameters within the LUTI model

calibration procedure.
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Viii.

In this thesis, it is shown that MANE performs better than RMSE when employed as a multi-
objective function, in all utilized optimization methods. MANE observed values are modeled
with no (or low) discrepancy.

Continuous improvement of the findings was proven in this study utilizing the DE calibration
approach; however, the usage of both GA and PSO meant the results were stuck at a point,
limiting future progress.

Because of DE operations in the hybrid optimization techniques (GADE and PSODE),
optimization and discovery of new solutions continue, and they do not adhere to bounds, as is
experienced in PSO and GA.

When considering computational time, calibration techniques that employ MANE as a multi-
objective function outperformed those using the RMSE as a multi-objective function.
PSO-based calibration techniques demonstrated the fastest convergence time among the GA-
and DE-based calibration techniques when employing both the MANE and the RMSE as multi-
objective functions.

In conclusion, when calibrating land-use model parameters, the recommended calibration
technique using the DE algorithm and employing the MANE as a multi-objective function
showed superior performance and faster convergence time than using the RMSE as a multi-

objective function.

Overall, the choice of optimization method depends on the problem being solved and its characteristics.

For example, DE and GA are often used for solving complex, nonlinear problems, while PSO is well-

suited for problems with continuous variables. Hybrid methods like GADE and PSODE may be helpful

for problems that require a combination of exploration and exploitation.

5.2

ii.

iii.

1v.

Future Works

Due to limited sources and data, this calibration approach is tested on a small example.
However, it is recommended that the method be implemented on a more prominent and actual
model for ideal results.

To speed up the calibration of LUTI models with multiple parameters, parallel computation
methods are crucial in reducing the time required.

The current model only included production and prices as objective parameters to be modeled.
In contrast, several parameters are considered and play a vital role in the land use and
transportation models, specifically with sustainable mobility, such as mixed-use, multi-modality
of traffic flows, population densities, accessibility, inclusiveness, connectivity to the existing
communication network, and public transport.

This study found that employing the DE algorithm as the calibration method for LUTI models
yields remarkable results. However, there is still ample room for improvement, particularly

when it comes to cases where the cost values (MANE or RMSE) approach zero, yet the modeled
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Vi.

data (production and prices) for certain combinations of Sectors and Zones remain insufficiently
close to the actual values. This area warrants further exploration in future research.

Another intriguing aspect that offers significant potential for improvement is the enhancement
of the DE algorithm through the consideration of DE mutation strategies. Specifically, the DE
algorithm calibration approach can benefit from further development and refinement.
Incorporating hybridization, where different algorithms are combined, presents ample room and
opportunities for enhancing the proposed calibration approach in this thesis. Exploring this
avenue further could lead to developing a comprehensive and automated calibration approach
for LUTI models on a global scale. It is an exciting area that could benefit from more research

expansion and investigation.
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6 POVZETEK

6.1 Uvod

cev v

cey v

rastjo, povprasevanjem po prometu in vzorci rabe zemljis¢. Vendar je bila zanesljivost teh modelov
vprasljiva, zato so potrebni zanesljivi postopki umerjanja in potrjevanja.

mesta. Modeli LUTI, ki se razvijajo od petdesetih let prejSnjega stoletja, zdruzujejo ekonometrijo,
demografijo in prometno inZenirstvo za simulacijo posledic razli¢nih scenarijev naértovanja na rabo
kalibracijskega pristopa je oviralo splo§no zaupanje v rezultate modelov LUTI.

Cilji raziskave se osredotocajo na reSevanje vprasanj zaupanja, povezanih z modeli LUTI, z razvojem
samodejnega in globalnega kalibracijskega pristopa. Studija uporablja algoritem diferencialne evolucije
(DE), ki je zmogljiv evolucijski algoritem, za oceno ucinkovitosti kalibracije pa uporablja statisticne
metrike, kot sta korenska srednja kvadratna napaka (RMSE) in srednja absolutna normalizirana napaka
(MANE). Za testiranje predlaganega kalibracijskega pristopa je izbran modul rabe tal in dejavnosti
modela TRANUS LUTL

Hipoteza, preverjena v tej raziskavi, je, da bo uporaba algoritma DE izboljsala kalibracijo modelov
LUTIL

Disertacija vsebuje pregled modelov LUTL tehnik umerjanja, metod optimizacije ter poseben poudarek
na algoritmu DE in modelu TRANUS LUTI. Podrobno je opisan predlagani samodejni in globalni
pristop kalibracije, ki vkljucuje analizo obcutljivosti, opredelitev ciljnih funkcij ter prilagoditev tehnik
kalibracije in optimizacije. Studija se zakljuéi s predstavitvijo rezultatov kalibracije, razpravami in

primerjavami razli¢nih tehnik ter predstavi omejitve in morebitna podrocja za prihodnje raziskave.

6.2 Ozadje

6.2.1 LUTI modeli

cev v
cov v

v v

vedenje, dostopnost in sploSno prostorsko strukturo mestnih obmocij. Modeli LUTI zdruZujejo

matematicne, statisticne in simulacijske tehnike, pri cemer uporabljajo razli¢ne vire podatkov, kot so

cev v
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Raziskana je zgodovina in uporaba modelov LUTI s poudarkom na njihovi zmozZnosti napovedovanja
prometnih omrezjih. Povratna zanka v modelih LUTI omogoca upoStevanje vzajemnega vpliva
prometnih politik na vzorce rabe zemlji$¢ in obratno, zaradi Cesar so dragocena orodja za oblikovalce
politik.

Predstavljena je klasifikacija modelov LUTI na podlagi zgodovinskega razvoja, ki jih deli na prvo, drugo
in tretjo generacijo. Prva generacija, ki sega v Sestdeseta in sedemdeseta leta prejSnjega stoletja,
vkljucuje interakcijske modele, modele matematiénega programiranja, ki temeljijo na optimizaciji, in
modele, ki temeljijo na matrikah input/output. Modeli druge generacije, ki so se pojavili v osemdesetih
in devetdesetih letih prej$njega stoletja, temeljijo na McFaddenovem delu o teoriji naklju¢ne koristnosti.
Modeli tretje generacije, ki so nastali konec devetdesetih let prej$njega stoletja, so zelo raz¢lenjeni in
dinamicni, kot je URBANSIM.

Izzivi pri modelih LUTI vkljucujejo uporabo nekoliko zastarelih pristopov pri simulaciji prometnih
podsistemov, kot je tradicionalna §tiristopenjska zaporedna metoda. Kljub napredku nobena generacija
modelov ni popolnoma nadomestila drugih, zato se predlaga sprejetje sodobnejsih, endogenih ali
eksogenih modelov.

urbanih okoljih. Njihov razvoj, ki ga spodbujajo vse ve¢je racunalniSke zmogljivosti in teoreti¢ni
preboji, je namenjen zagotavljanju bolj realisti¢nih predstavitev in bolj$ih orodij za odloCanje pri
dolgoroénem nacrtovanju v mestih in regijah. Tehnike umerjanja in potrjevanja ostajajo kljucne za

vzpostavitev in pojasnitev operativne zmogljivosti modelov LUTIL.

6.2.2 TRANUS

Model TRANUS, ki ga je zasnoval Tomas de la Barra, velja za Siroko uporabljan odprtokodni model
prometnim modelom, ki deluje kot input-output model, ki tesno povezuje vse komponente urbanih ali
regionalnih sistemov. TRANUS je posebej razvit za simulacijo posledic razli¢nih projektov in politik v
mestih in regijah, vrednotenje rezultatov iz socialno-ekonomskih, proracunskih in okoljskih perspektiv.
Model deluje na podlagi makroekonomskega ravnovesja, pri ¢emer obravnavano obmocje razdeli na
dejavnosti ter modul transporta. Prvi simulira prostorski ekonomski sistem z analizo lokacij dejavnosti
in odnosov med gospodarskimi sektorji, medtem ko drugi izracuna uporabo prometnega omreZja in s
tem povezano neuporabnost. Oba modula uporabljata teorijo naklju¢ne uporabnosti in uporabljata logit
modele diskretne izbire za razli¢ne oznake.

TRANUS doseZe ravnotezje s ponavljajo¢im se postopkom, pri ¢emer uposteva dejavnike, kot so

lokacija dejavnosti, raba zemlje in neuporabnost prevoza. Model uporablja vhodno-izhodni okvir z

cev v
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dejavnosti izraCunava rezultate, porabo in povprasevanje po tokovih, medtem ko modul za transport
dodeljuje potovalne tokove na podlagi povprasevanja.

Uporabljen je standardni okvir input-output modela, ki razlikuje med prevoznimi in neprenosnimi
sektorji. Prenosni sektorji proizvajajo tokove, medtem ko se neprenosni sektorji porabljajo le tam, kjer
so ustvarjeni. Gospodarski sektorji so razvr$¢eni v zemlji§ca ali povrSine, gospodinjstva in industrije,
od katerih je vsak predstavljen z razlicnimi parametri in funkcijami. Parametri elasti¢nosti, sektorska
teza, parametri disperzije in drugi prispevajo k modeliranju obnasanja gospodarskih subjektov.
Matemati¢ne enacbe TRANUS-a vkljucujejo znacilnosti, kot so eksogena in inducirana proizvodnja,
eksogeno in inducirano povprasevanje, stroski potrosnje, proizvodni stroski in dodana vrednost. Te
znacilnosti igrajo kljucno vlogo pri analizi obcutljivosti med predlaganim pristopom kalibracije. Cilj

TRANUS-a je zagotoviti celovito orodje za odlo¢anje pri dolgoronem nacrtovanju, ki vkljuéuje

cev v

6.2.3 Kalibracija modela LUTI

Umerjanje modelov interakcije med rabo tal in prometom (LUTI) je zaradi negotovosti, ki je nelo¢ljivo
povezana s temi numeri¢nimi modeli in izhaja iz teoreti¢nih predpostavk in kakovosti podatkov, zelo
pomemben proces. Kalibracija vkljucuje ocenjevanje in prilagajanje parametrov modela za zmanjSanje
razlik med dejanskimi in modeliranimi podatki. Kljub izzivom, ki jih predstavljajo teoreti¢na,
metodoloska in prakti¢na vprasanja, je kalibracija bistvena za potrjevanje rezultatov simulacij, zlasti v
majhnih merilih.

Modelu TRANUS LUTI uporablja dva pristopa h kalibraciji: ad hoc ekonometri¢ne metode ter metode
poskusov in napak. Pomanjkanje kalibracije lahko privede do neto¢nih odloCitev v postopku
nacrtovanja, zato je kalibracija klju¢nega pomena za izboljSanje natancnosti simulacije. Postopek
umerjanja vkljucuje dolocitev parametrov modela z uporabo podatkov, predhodnega znanja ali
predvidenih rezultatov modela. Vendar pomanjkanje natan¢nih in ucinkovitih nacinov za kalibracijo
parametrov, zlasti pri obseznih modelih, ostaja izziv.

Raziskani so bili razli¢ni pristopi k umerjanju modela LUTI. Pogosto se uporabljajo optimizacijske
metode, kot sta optimizacija z najvecjo verjetnostjo in optimizacija s pomocjo roja delcev (PSO). Poleg
tega so raziskovalci razvili polavtomatske pristope kalibracije za dolocene modele LUTI, kot so
MEPLAN, PECAS, Pirandello, UrbanSim in ITLUP. Ti pristopi vkljucujejo tehnike, kot so optimizacija
po metodi najmanjsih kvadratov, spuscanje po naklonu in analiza obcutljivosti s simulacijo Monte Carlo.
Modelu MUSSA za umerjanje uporablja ekonometri¢ne pristope, model TRANUS pa je bil uporabljen
na razlicnih lokacijah po svetu, vklju¢no z Brazilijo in Francijo, pri ¢emer se tehnike umerjanja
razlikujejo od ad hoc metod do ekonometri¢nih metodologij. V nekaterih Studijah so bile predlagane
verjetnostne metodologije preverjanja in preuceno Sirjenje negotovosti med postopkom umerjanja z

uporabo metode Monte Carlo.
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Kljub velikemu napredku na podrocju ekonometrije in optimizacije se pri umerjanju dinamicnih ali
kvazidinami¢nih modelov Se vedno pojavljajo izzivi. Tehnike umerjanja v objavljenih ¢lankih pogosto
niso v celoti opisane, zato obstaja potreba po globalnih in samodejnih strategijah umerjanja za modele
LUTI. Na splosno je umerjanje modelov LUTI zapletena in klju¢na naloga, ki zahteva skrbno

upostevanje razli¢nih dejavnikov, da se povecata natanc¢nost in zanesljivost rezultatov simulacij.

6.2.4 Optimizacija

Optimizacija je Siroko podro¢je uporabne matematike z razliénimi podpodrocji, ki se ukvarjajo s
problemi s posebnimi znacilnostmi, da bi nasli uinkovite resitve. V pregledu so obravnavane trenutne
spremembe in prihodnji trendi na podroc¢ju optimizacijskih tehnik.

Pregled optimizacije: Optimizacija se osredotoca na doloc¢anje skrajne vrednosti funkcije na dolocenem
podro¢ju ob upostevanju ve¢ vrednosti spremenljivk. Splosna oblika optimizacijskega problema
vkljucuje optimizacijo ciljnih ali stros§kovnih funkcij ob upostevanju enakosti, neenakosti in stranskih
omejitev.

Razvrstitev pristopov k optimizaciji: Optimizacijski pristopi se delijo na lokalne in globalne algoritme.
Lokalna optimizacija: Lokalna optimizacija je namenjena iskanju enega od ekstremov funkcije.
Algoritmi, ki temeljijo na gradientu in se pogosto uporabljajo pri lokalni optimizaciji, imajo omejitve,
vkljuéno z iskanjem le lokalnih optimumov in teZavami pri diskretnih optimizacijskih problemih.
Globalna optimizacija: Za razliko od lokalne optimizacije je cilj globalne optimizacije dolo¢iti globalno
najmanjSo vrednost funkcije ne glede na zaCetni polozaj. Deterministiéna globalna optimizacija
zagotavlja dragocene informacije v nekonveksnih situacijah z ve¢ optimami. Algoritmi globalne
optimizacije imajo v primerjavi z lokalnimi algoritmi vecjo verjetnost, da odkrijejo globalne ali skoraj
globalne optimalne vrednosti. Tehnike so razdeljene na stohastino iskanje (npr. evolucijsko
racunalnistvo) ali deterministi¢ne algoritme.

Avtomatizirana strategija globalne optimizacije z algoritmom DE: V ospredju je razvoj avtomatizirane
in globalne optimizacijske strategije za kalibracijo modela LUTI z algoritmom diferencialne evolucije
(DE), ki je ¢lan druzine evolucijskih algoritmov. Stohasti¢no-hevristiéne metode globalne optimizacije,
kot je DE, so bile uporabljene za reSevanje vecjih problemov, Ceprav brez zagotovil o resitvah ali
konvergencnem obnasanju.

Ta povzetek vsebuje poglobljen pregled optimizacije s poudarkom na razlikovanju med lokalnimi in
globalnimi optimizacijskimi tehnikami ter izpostavlja uporabo algoritma diferencialne evolucije v

okviru kalibracije modela LUTI.

6.2.4.1 Vecfnamenski pregled optimizacije

Kon¢ni cilj optimizacijskih problemov je optimizacija ene ali vec¢ ciljnih funkcij. Medtem ko se ve¢ina
metod osredotoca na eno samo ciljno funkcijo, se veCnamenska optimizacija ukvarja z optimalnim

kompromisom med dvema ali ve¢ povezanimi cilji, kar je pogosto v kompleksnih inZenirskih
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aplikacijah. Evolucijski algoritmi (EA), zlasti genetski algoritmi (GA), optimizacija z rojem delcev
(PSO) in diferencialna evolucija (DE), so se izkazali za u€inkovite pri reSevanju izzivov vecobjektne
optimizacije.
Evolucijsko racunanje vkljucuje iskanje resitev z ocenjevanjem vrednosti fitnesa, izbiro boljsih resitev
ter generiranje novih kandidatov s pomocjo evolucijskih in selekcijskih procesov. EC se zgleduje po
naravni selekciji in genetiki ter uporablja izraze, kot so posamezniki, populacije, genomi, kromosomi in
potomci. Zaradi svoje ucinkovitosti pri reSevanju zapletenih problemov optimizacije se pogosto
uporablja.
EAs, ki temeljijo na nacelih bioloske evolucije, delajo z naborom resitev, ki se posodabljajo s postopki,
kot so krizanje, mutacija in selekcija. GA, PSO in DE so priljubljeni EA za ve¢predmetno optimizacijo.
Obravnavajo izzive kombinatori¢ne optimizacije, pri cemer je GA dobro uveljavljen, PSO in DE pa
pridobivata pozornost zaradi uporabe pri veépredmetni optimizaciji.
GA je evolucijski algoritem, ki ga je zasnoval John Holland in posnema genetske in evolucijske
koncepte. GA uporabljajo binarne nize za predstavitev kromosomov in uporabljajo genetske operatorje,
kot so krizanje, mutacija in nakljucna izbira. Odli¢ni so pri reSevanju realnih, nejasnih in zapletenih
optimizacijskih vprasanj ter primerni za diskretne in hrupne prostore.
PSO, ki ga je navdihnilo obnaSanje rojev v naravi, uporablja delce za predstavitev potencialnih reSitev
v iskalnem prostoru. Vsak delec ima spomin, ki mu omogoca, da se vrne k prej znanim resitvam. PSO
se odlikuje po preprostem izvajanju in je boljsi od drugih algoritmov glede uspesnosti, kakovosti resitev
in hitrosti konvergence.
Diferencialne Evolucije (DE):
Algoritem DE, ki sta jo uvedla Storn in Price, je stohasti¢ni evolucijski algoritem, ki temelji na
populaciji in je namenjen reSevanju problemov v zveznih prostorih. DE je znan po svoji preprostosti,
ucinkovitosti in uspesnosti pri reSevanju optimizacijskih izzivov, zlasti zaradi omejenih kontrolnih
parametrov. Za razliko od genetskih algoritmov (GA), DE vklju€uje samoprilagodljivo mutacijsko
shemo, ki zagotavlja prednosti, kot so u€inkovita uporaba pomnilnika, manjSa racunska zahtevnost in
hitrejSa konvergenca.
DE odlikujejo preprostost, enostavnost uporabe, hitrost in velika verjetnost odkritja globalnih
optimalnih reSitev. Njegova vsestranskost se razteza na aplikacije v celostevilski in diskretni
optimizaciji, nelinearni optimizaciji z omejitvami in kazenskimi funkcijami ter vec¢modalnih,
vecpredmetnih, omejenih in dinami¢nih modelih.
DE deluje kot metahevristicna tehnika, ki temelji na populaciji in uporablja populacijo NP
posameznikov, ki jih predstavljajo D-dimenzionalne odlocCitvene spremenljivke. Algoritem sestavljajo
trije glavni operatorji: mutacijo, krizanje (rekombinacijo) in izbiro.

e Inicializacija: DE se za¢ne s populacijo posameznikov NP, od katerih vsakega oznacuje vektor

D-dimenzionalnih odlocitvenih spremenljivk.
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e Mutacija: Pri mutaciji se na podlagi ciljnega vektorja ustvari nov vektor potomcev. DE uvaja
strategije mutacije, oznac¢ene z DE/X/y/z, kjer x predstavlja vrsto ciljnega vektorja ("nakljucni"
ali "najboljsi"), y oznaCuje Stevilo uporabljenih vektorjev razlike, z pa oznaCuje operator
rekombinacije (binomski ali eksponentni).

e Po mutaciji krizanje ustvari poskusni vektor z uporabo ciljnega in donorskega vektorja.
Parameter stopnje krizanja, Cr, nadzoruje stopnjo motenj osnovnega (ciljnega) vektorja. V DE
se obi¢ajno uporabljata tehniki enakomernega (binomskega) in eksponentnega krizanja.

e Izbor: Izbira z uporabo pohlepnega pristopa primerja primernost poskusnega vektorja s
primernostjo ciljnega vektorja. Vektor z najboljSo primernostjo se izbere kot novi ¢lan
populacije in v naslednji generaciji nadomesti ciljni vektor.

DE je pridobil veliko pozornosti in je bil uspesno uporabljen za razli¢ne optimizacijske probleme.
Ucenjaki so raziskali razlicne strategije mutacije, nastavitve prilagodljivega nadzora in hibridizacijske
pristope, da bi izboljsali u¢inkovitost DE. Predlagane so bile prilagodljive razli¢ice DE, zdruzevanje DE
z drugimi algoritmi in uporaba samoprilagodljivih kontrolnih nastavitev parametrov.

Najnovejsi dosezki vkljucujejo tehnike za izboljSanje raznolikosti populacije, strategije za reSevanje
situacij stagnacije, sisteme z ve¢ mutacijami, prilagodljive operatorje mutacij za razvr§¢anje za omejene
probleme in dvostopenjske pristope k podpopulacijam. Raziskovalci so se osredotocili tudi na
skalabilnost za izzive optimizacije z velikim Stevilom podatkov, uporabo kooperativne koevolucije in
nadgradnjo DE za omejeno optimizacijo z ve¢ metodami lokalnega iskanja.

Razli¢ni raziskovalci so predlagali prilagodljive kontrolne nastavitve DE, predstavljeni pa so bili tudi
podrobni pregledi in taksonomije razli¢ic DE. Uporaba posploSenega faktorja skaliranja, sinteti¢nih
mutacijskih operatorjev s prilagajanjem parametrov in vkljuevanje kovarianénih matrik prikazujejo
nenehno evolucijo in izpopolnjevanje algoritma DE.

Ce povzamemo, diferencialna evolucija ostaja moéno in vsestransko orodje za optimizacijo, ki se
nenehno razvija z inovativnimi strategijami, prilagodljivim nadzorom in tehnikami hibridizacije za
reSevanje razli¢nih in kompleksnih izzivov optimizacije. Raziskovalci $e naprej raziskujejo njene

zmogljivosti in izboljSujejo njeno ucinkovitost za razlicna podrocja uporabe.
6.3 Metodologija

Raziskovalna metodologija za kalibracijo modela LUTI (Land-Use Transportation Integration)
vkljucuje celoten postopek oblikovanja modela, vklju¢no z dolocitvijo gospodarskih sektorjev,
pridobivanjem podatkov in regionalnim dolo¢anjem obmocij. Kalibracija se v tem kontekstu nanaSa na
ocenjevanje parametrov modela za ponovitev podatkov iz prejSnjega leta v raziskovalni regiji. Ta
dolgotrajen postopek obicajno izvajajo strokovnjaki in lahko traja ve¢ mesecev.

V primeru modela TRANUS, modela za regije z N sektorji in M obmocji, kalibracija vkljucuje
posodobitev cen v senci, da se proizvodnja ujema z opazovanimi podatki. Cene v senci sluzijo kot

korekcijski pogoji, ki izravnavajo vidike, ki se ne odrazajo v modelu.
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Predlagan je nov pristop kalibracije, ki uporablja algoritem diferencialne evolucije za samodejno in
globalno ocenjevanje parametrov. Namen tega pristopa je nadomestiti trenutni zaporedni postopek
kalibracije programa TRANUS in oceniti uspe$nost z uporabo vecobjektivnih funkcij (MANE in
RMSE). Opravljena je primerjava z genetskim algoritmom (GA) in optimizacijo s pomocjo roja delcev
(PSO), uspesnost optimizacije pa je izboljSana s hibridnim PSODE in hibridnim GADE.

V fazi umerjanja se izvede analiza obcutljivosti, da se oceni vpliv vhodnih parametrov na rezultate.
Globalna analiza obc¢utljivosti z uporabo posplosenih Sobolovih indeksov opredeli vplivne parametre.
Program TRANUS je kodiran v Pythonu, Sobolovi indeksi pa so ocenjeni z uporabo programa SALIB,
pri ¢emer se kot funkcija napake uposteva srednja absolutna normalizirana napaka (MANE).

Za koli¢insko opredelitev napake med dejanskimi in simuliranimi rezultati sta uporabljeni objektivni
funkciji, in sicer korenska srednja kvadratna napaka (RMSE) in srednja absolutna normalizirana napaka
(MANE). Te vecobjektivne funkcije se pogosto uporabljajo na razli¢nih raziskovalnih podrocjih,
vkljuéno z meteorologijo, kakovostjo zraka, podnebjem, prometom in transportom.

Umerjanje modelov LUTI je klju¢nega pomena za razvoj uporabniku prijaznih splo$nih modelov z
zanesljivimi rezultati za nosilce odloCanja. Za kalibracijo parametrov modelov so bile uporabljene
razlicne metode optimizacije, kot so genetski algoritem, optimizacija roja delcev, ocenjevanje
najveCjega verjetja in diferencialna evolucija (DE). Algoritem DE je za predlagani pristop kalibracije
izbran zaradi svojih prednosti, vklju¢no z moznostjo samodejnega in globalnega ocenjevanja.
Algoritem diferencialne evolucije je izbran zaradi svoje preprostosti in enostavnosti izvajanja.
Algoritem deluje v n-razseznem iskalnem prostoru in uporablja postopke, kot so inicializacija, mutacija,
krizanje in izbira. V fazi mutacije se uporabljajo posebne tehnike za izrezovanje mutantnih vrednosti na
podlagi zgornjih in spodnjih mej Zelenih parametrov.

Nastavitve parametrov za algoritem DE: Vkljucevanje parametrov, kot so mutacijski faktor (1F), stopnja
krizanja (CR) in velikost populacije (NP), pomembno vpliva na u¢inkovitost algoritma DE. V §tudiji je
uporabljeno samodejno iskanje optimalnih kombinacij v doloCenih razponih. PrejSnje Studije
priporocajo vrednosti NP znotraj [3, 8] *D, pF=0,6 in CR znotraj [0,3, 0,9].

Uporabljene so razli¢ne strategije mutacije, pet obicajnih strategij pa je modificiranih na podlagi primera
modela LUTI. Studija poudarja, da je strategija mutacije kljuéna za doseganje najboljsih rezultatov v
algoritmu DE.

GA vkljucuje naklju¢no izbrano populacijo, oceno primernosti, izbiro starSev, krizanje in mutacijo.
Nastavitve parametrov, zlasti verjetnost krizanja (Cr) in stopnje mutacije (mu), se ocenijo v dolo¢enem
obmodju.

PSO je algoritem, ki temelji na populaciji in uporablja delce, ki predstavljajo potencialne resitve.
Parametri, kot so osebni in globalni u¢ni koeficienti ter utez inercije, se ocenijo za optimalno delovanje.
Hibridne strategije (PSODE in GADE): Hibridizacija vkljucuje zdruZevanje operatorjev in razlicic
razli¢nih tehnik optimizacije. PSODE (hibrid PSO in DE) in GADE (hibrid GA in DE) sta uvedena za
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izboljsanje kalibracijskega pristopa. Nastavitve parametrov za oba hibridna algoritma so ovrednotene s
polavtomatskim postopkom.

Shema poteka kalibracijskega pristopa in grafi¢ni uporabniski vmesnik predlagata uporabniku prijazen
pristop za optimizacijo modela LUTI. Merila za zaustavitev za optimizacijske tehnike so opredeljena na

podlagi konvergence in natan¢nosti.

6.4 Rezultati in razprava

Algoritem diferencialne evolucije (DE) se izkaZe za najuspe$nejSo tehniko optimizacije. Prekasa
genetski algoritem (GA) in optimizacijo s pomo¢jo roja delcev (PSO) v smislu metrik povprecne
absolutne normalizirane napake (MANE) in korenske povprecne kvadratne napake (RMSE).
Izboljsanje hibridnih strategij: Medtem ko DE izstopa, Studija vkljucuje hibridne strategije (GADE in
PSODE), pri ¢emer je prikazana njuna uc¢inkovitost pri izbolj$anju rezultatov kalibracije v primerjavi s
samostojnima GA in PSO. Hibridni pristopi so pokazali opazen napredek pri doseganju bolje uglasenih
parametrov.

Algoritem DE dosledno dokazuje svojo sposobnost konvergence k optimalnim reSitvam. Vrednosti
MANE skoraj dosezejo niclo, kar kaZze na tesno ujemanje z opazovanimi podatki. Iterativna narava
algoritma DE mu omogoca, da nenehno izboljSuje rezultate kalibracije v ve¢ iteracijah.

Ceprav je pri optimizaciji s pomo&jo roja delcev (PSO) konvergenca hitra in optimalno vrednost MANE
doseze v samo 110 iteracijah, se le stezka Se izboljSa, kar kaZe na morebitne omejitve pri raziskovanju
prostora resitev.

V S§tudiji sta za oceno tehnik umerjanja uporabljeni vecobjektivni funkciji MANE in RMSE. DE z
uporabo MANE doseze natancnejSe vrednosti parametrov, ki se natanno ujemajo z opazovanimi
podatki o proizvodnji in cenah. Nasprotno pa DE z uporabo RMSE povzroci vecje neskladje med
modeliranimi in opazovanimi vrednostmi, kar poudarja pomen izbire ustreznih ciljnih funkcij.
Predstavljeni so rezultati kalibracije za DE, GA in PSO, ki kaZejo optimizirane vrednosti parametrov,
povezanih z gospodarskimi sektorji in rabo zemljis¢. DE dosledno prekasa GA in PSO, kar kaze na
njeno sposobnost uc¢inkovitejSega natancnega prilagajanja vrednosti parametrov.

V $tudiji so primerjane modelirane vrednosti, pridobljene z umerjanjem, z opazovanimi podatki iz
modela TRANUS. DE, zlasti pri uporabi MANE, daje vrednosti parametrov, ki so tesno usklajene z
dejanskimi podatki modela TRANUS. Primerjave poudarjajo ucinkovitost algoritma DE pri zajemanju
kompleksnosti modela rabe tal.

Podrobna primerjava hibridnih strategij GADE in PSODE pokaze razlike v njuni u¢inkovitosti. GADE,
zlasti pri uporabi MANE, daje dobro prilegajoCe se vrednosti v primerjavi z opazovanimi rezultati
TRANUS. Studija poudarja, da je treba oba hibridna modela skrbno ovrednotiti in pri tem upostevati

dejavnike, kot sta prileganje dejanskim podatkom in morebitno pretirano prileganje.
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Primerjava u¢inkovitosti: Primerjava ¢asov obdelave za DE, GA in PSO. PSO je najhitrejsi, saj postopek
umerjanja opravi v najkrajSem casu. To ucinkovitost je mogoce pripisati enosmernemu vplivu
najboljSega delca v roju, ki omejuje kandidate za reSitev in preprecuje nadaljnje izboljsave.

Ce povzamemo, je v razdelku Rezultati in razprava podana celovita analiza rezultatov kalibracije, pri
¢emer so poudarjene prednosti algoritma DE, prednosti hibridnih strategij in pomen izbire ustreznih
cilinih funkcij. Studija poudarja prakti¢no uporabnost predlaganega kalibracijskega pristopa, zlasti z
uporabniku prijaznim grafi¢nim uporabniskim vmesnikom, ter ponuja vpogled v prihodnje raziskave in

izbiro optimizacijske strategije.
6.5 Zakljucek in Prihodnje delo

Umerjanje modelov interakcije med rabo zemlji§¢ in prometom (Land-Use Transport Interaction -
LUTI) je kljuénega pomena za zagotavljanje njihove natancnosti pri urbanisticnem nacrtovanju.
Obstojece metode so polavtomatske, nimajo globalnega postopka ocenjevanja in se soo¢ajo z izzivi
zaradi kompleksne in dolgotrajne narave modelov LUTI. Ta §tudija uvaja novo tehniko kalibracije z
uporabo algoritma diferencialne evolucije (DE), katere cilj je globalni in samodejni pristop.
Predlagana tehnika kalibracije DE presega tradicionalne algoritme (PSO, GA) in hibridne strategije
(GADE, PSODE) v smislu modeliranja opazovanih podatkov z uporabo vecobjektivnih funkcij MANE
(Mean Absolute Normalized Error) in RMSE (Root Mean Square Error). b) Kalibracija ve¢ parametrov:
DE omogoca hkratno kalibracijo ve¢ parametrov v modelu LUTI, kar omogoca celovit pristop k
optimizaciji. ¢) Superiornost MANE: MANE kot ve¢predmetna funkcija dosledno presega RMSE pri
vseh metodah optimizacije, kar kaZze na njeno u¢inkovitost pri doseganju bolje kalibriranih rezultatov.
d) Nenehno izboljSevanje z DE: DE kaze nenehno izboljSevanje, medtem ko GA in PSO obicajno
ostajata pri mejah parametrov. Hibridne razli¢ice (GADE, PSODE) z vklju¢evanjem DE kaZejo stalno
optimizacijo brez mejnih omejitev. e) Racunska ucinkovitost: Kalibracijske tehnike, ki uporabljajo
MANE, kazejo hitrejSo konvergenco v primerjavi s tistimi, ki uporabljajo RMSE. Kalibracija, ki temelji
na PSO, izkazuje najboljsi cas konvergence med tehnikami, ki temeljijo na PSO, GA in DE ter
uporabljajo tako MANE kot RMSE.

Predlagana tehnika kalibracije DE, ki uporablja MANE kot ve¢predmetno funkcijo, je boljSa od drugih
metod v smislu u¢inkovitosti (razmerje med modeliranim in opazovanim) in ¢asa konvergence. Izbira
optimizacijske metode je odvisna od specificnih znacilnosti problema, pri ¢emer sta DE in GA primerna
za kompleksne, nelinearne probleme, PSO pa za probleme z zveznimi spremenljivkami. Hibridne
metode, kot sta GADE in PSODE, ponujajo ravnovesje med raziskovanjem in izkori§¢anjem.

Zaradi omejenih podatkov je pristop kalibracije preizkusen na majhnem primeru, pri ¢emer se priporoc¢a
uporaba na vecjih, resnicnih modelih. Ugotovljene so nadaljnje izboljSave kalibracije DE, zlasti kadar
se vrednosti stroskov priblizujejo ni¢li, vendar modelirani podatki Se vedno odstopajo od dejanskih

vrednosti. IzboljSanje mutacijskih strategij pri kalibraciji DE in raziskovanje hibridizacije z razli¢nimi
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algoritmi ponujata priloznosti za prihodnje raziskave. Cilj je napredovati v smeri globalnega in

samodejnega pristopa kalibracije za modele LUTI, ki bo obravnaval zapletenost in izboljsal natan¢nost.
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