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1 Introduction 

The design methodology for stiffened plates in 

EN 1993-1-5 [1] distinguishes between three types of 

buckling behaviour in stiffened plates: column-like behav-

iour without any post-buckling resistance, plate-like be-

haviour considering post-buckling resistance, and interac-

tive behaviour between the two. Based on the elastic 

critical buckling stresses for column-like buckling σcr,c and 

plate-like buckling σcr,p, the reduction factors χc and ρp are 

determined using the European buckling curves and the 

Winter formula, respectively. The final reduction factor for 

the interactive behaviour results from the reduction fac-

tors and the ratio between the behaviour modes σcr,p/σcr,c, 

from which the load-bearing capacity of the stiffened plate 

is determined. In recent years, several investigations have 

shown that when considering plates with closed-section 

stiffeners, the application of the design rules [1] can lead 

to unsafe results if the torsional stiffness of the stiffeners 

is taken into account in the critical stress calculation [2,3]. 

The current Amendment A2 to EN 1993-1-5 [1] therefore 

stipulates that the torsional stiffness of the stiffeners 

should generally be neglected when determining the criti-

cal buckling stresses. However, neglecting the beneficial 

influence of torsional stiffness can lead to a significant un-

derestimation of plate resistance [4] and thus to an in-

crease in construction costs. 

In order to improve the economy of design of plates stiff-

ened with closed-section stiffeners and loaded in pure 

compression, Kövesdi et al. [5] and Pourostad and 

Kuhlmann [6] have recently proposed alternative design 

procedures that allow the positive effects of torsional stiff-

ness on plate resistance to be taken into account. Based 

on the latter [6], the forthcoming second generation of EN 

1993-1-5, namely FprEN 1993-1-5 [7], will bring changes 

in terms of buckling and interpolation curves that allow to 

consider the positive effects of torsional stiffness of closed-

section stiffeners. 

For the determination of the elastic critical buckling stress 

for plate-like buckling, namely σcr,p, any relevant method 

can be used, including linear buckling analysis (LBA) with 

Finite Element methods, dedicated software such as 

EBPlate [8] or the analytical formula in Annex A of 

EN 1993-1-5 [1]. In the numerical analysis, the torsional 

stiffness of trapezoidal stiffeners is considered directly in 

the model. However, the analytical equation for the elastic 
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critical plate buckling stress of an equivalent orthotropic 

plate in the informative Annex A does not take into account 

the torsional stiffness of longitudinal stiffeners with closed 

cross-section. Neglecting the torsional stiffness in the cal-

culation of σcr,p leads to conservative results when the 

newly proposed interpolation equation according to [7] is 

applied. Therefore, in the first part of this paper, a new 

analytical equation for the estimation of the critical buck-

ling stress for plate-type buckling is presented, which 

takes into account the torsional inertia of the stiffeners and 

is consistent with the existing equation from Annex A, 

EN 1993-1-5. 

The critical elastic buckling stress for plate-like behaviour 

of a stiffened plate (σcr,p) corresponds to a “global” buck-

ling mode in which any “local” buckling of subpanels is ig-

nored. An example of a perfectly “global” buckling mode 

is shown in Figure 1(a), while Figure 1(b) shows an exam-

ple of a “global” mode combined with “local” buckling of 

subpanels. For the majority of stiffened plate configura-

tions, especially for plates with relatively rigid stiffeners, it 

is difficult to find “clear” buckling modes that represent a 

perfectly global buckling mode. In the second part of the 

paper, a FE linear buckling analysis is presented where the 

first global eigenmode was identified for a variety of lon-

gitudinally stiffened plates with different geometric pa-

rameters. 

Finally, both approaches to determine σcr,p, namely the 

newly proposed analytical approach and the numerical ap-

proach, are used to calculate the ultimate resistance of 

plates according to the new procedure from 

FprEN 1993-1-5 [7] and compared with the GMNIA results 

from [6].  

(a) A “global” buckling mode (b) A combined buckling mode

Figure 1 Examples of buckling modes resulting from a linear buckling 

analysis (LBA) for a longitudinally stiffened plate loaded in compression 

2 Analytical determination of σcr,p 

2.1 Neglecting torsional rigidity of closed longitu-

dinal stiffeners 

The analytical equation for the elastic critical buckling 

stress of a stiffened plate given in Annex A of EN 1993-1-5 

is based on an orthotropic plate approach, where a struc-

turally orthotropic plate is reduced to a materially ortho-

tropic plate with elastic properties equal to the average 

properties of the original plate. Thus, instead of a stiffened 

plate, a homogeneous plate of constant thickness is con-

sidered that has the same stiffness characteristics as the 

stiffened plate. This procedure requires the determination 

of three elastic rigidity constants, namely Dx, Dy and Dxy, 

which represent the equivalent flexural rigidities of struc-

turally orthotropic plates. According to Timoshenko and 

Woinowski-Krieger [9], the flexural rigidities for a plate re-

inforced with a series of equidistant ribs in the longitudinal 

direction x, can be determined as follows: 
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where Isl is the second moment of area of the entire stiff-

ened plate and Ip is the second moment of area for the 

bending of the plate.  

For a simply supported, longitudinally stiffened plate 

loaded in axial compression (Nx = -px and Ny = Nxy = 0), 

the governing differential equation of an orthotropic plate, 

also known as “Huber’s equation”, can be written:  
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Eq. (3) is a homogeneous partial differential equation and 

the critical buckling load is obtained from its solution. The 

following displacement function solves the equation for 

simply supported boundary conditions: 
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By introducing nondimensional parameters for the relative 

axial stiffness δ and the relative flexural stiffness γ in Eqs. 

(5,6) and minimizing the solution of the differential equa-

tion (3), the buckling coefficient kσ,p from Eq. (7) can be 

defined in two branches: 

sl pA A = (5) 

sl pI I = (6) 

, ,cr p E pk = (7) 

2 2

4
, 2

4
,

(1 ) 1
for  

(1 )

2(1 )
for  

(1 )

p

p

k

k





 
 

 


 



+ + −
= 

+

+
= 

+

(8) 

where α is the aspect ratio of the plate and Asl and Ap are 

the sum of the gross areas of the individual longitudinal 

stiffeners and the gross area of the plate, respectively. 

The solution (8) is the plate buckling coefficient for the 

global buckling of the stiffened plate under uniform com-

pression given in Annex A of EN 1993-1-5. 

2.2 Considering torsional rigidity of closed longi-

tudinal stiffeners 

In this section, the analytical equation for σcr,p presented 

in section 2.1 is modified to also take into account the tor-

sional inertia of the stiffeners. 

According to Saint-Venant’s theory and Bredt's formula for 
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thin-walled cross-sections with a closed shape, the tor-

sional rigidity of the plate stiffened with closed ribs can be 

calculated by the following equation: 

2
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where 2H is the effective torsional rigidity of an orthotropic 

plate from Eq. (3). It is the torsional section constant of 

the closed-rib stiffened plate, G is the shear modulus, b is 

the plate width, nst is the number of longitudinal stiffeners, 

AR is the average of the areas enclosed by the outer and 

inner boundaries of the cross-section of the closed-section 

stiffener and dsi is the length of the cross-sectional part 

with thickness ts,I, see Figure 2.  

Introducing the nondimensional parameter for the relative 

torsional stiffness and assuming that the flexural rigidities 

in both perpendicular directions remain the same as in 

section 2.1, the solution to Eq. (5) can be written as fol-

lows: 
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If we assume a buckling shape with one half-wave in the 

transverse direction (n = 1), the buckling coefficient kσ,p is 

a function of m, α and the nondimensional parameters δ, 

γ and θ of the stiffener. Finally, by minimizing the function 

(11), kσ,p can be defined in two branches, the first part 

corresponding to the value of kσ,p for m = 1 and the second 

part representing the minimum value of the function: 
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Eq. (12) represents the analytical solution for the buckling 

coefficient of a longitudinally stiffened plate, taking into 

account the torsional stiffness of trapezoidal stiffeners.  

Figure 2 Cross-section properties of a trapezoidal stiffener 

3 Numerical determination of σcr,p 

Linear plate buckling analysis (LBA) was performed to ob-

tain the critical plate buckling stress for global buckling 

verification, namely σcr,p. The calculations were performed 

using the finite element software ABAQUS [10], and shell 

elements of type S4R were selected. The direct stresses 

were applied constantly on the edges of the plate and the 

stiffeners in the longitudinal direction. Figure 3 shows the 

simulated boundary conditions and the schematic loading. 

The panels were stiffened with four closed trapezoidal stiff-

eners. To vary the relative stiffness of the stiffeners, the 

lower and upper widths of the trapezoidal stiffeners were 

kept constant at 300 and 150 mm, respectively, and the 

thickness and height of the trapezoidal stiffeners were var-

ied. The stiffeners were arranged so that the width of all 

subpanels was the same. The geometry and arrangement 

of the stiffeners are shown in Figure 4. 

The following input parameters were varied: 

- Slenderness of the panels (global): b/t = from 22

to 533

- Aspect ratios of the panels: α = a/b = 1.0; 1.5;

2.0; 3.0

- Relative bending stiffness of the stiffeners γsl,i
* =

25; 50; 80; 110; 150

The relative bending stiffness of the stiffeners γsl,i
* is de-

fined according to FprEN 1993-1-5 [7] by: 

*

,*

,

sl i

sl i

EI

bD
 = (13) 

where Isl,i
* is the second moment of area of one 

stiffener for out-of-plane bending, its cross-section includ-

ing a participating width of the plate of 10t each side of 

stiffener-to-plate junction. 

The global buckling mode was automatically identified by 

exporting the deformation from the linear buckling analy-

sis performed in Abaqus to Matlab. In Matlab, the coordi-

nates of the sub-panels and stiffeners were identified and 

the out-of-plane deformation of all sub-panels and stiffen-

ers was analysed. The deformation of the stiffeners was 

used as a criterion for determining the global buckling 

mode. If the deformation was greater than 0.5, the buck-

ling mode was defined as the global buckling mode. More 

information on the methodology of the global buckling 

identification can be found in [11]. 

a) b) 
Figure 3 Numerical model for LBA: a) boundary conditions and b) lad-

ing [6, 11] ds1

ts,3

ds3

ds2

ts,1

ts,2

AR

ts,4

ds4

1828



Figure 4 Dimensions and arrangement of the stiffeners in panels of 

the parametric study [6, 11] 

4 Comparison of the analytical calculation with 

GMNIA results 

The new design approach proposed by Pourostad and 

Kuhlmann [6] and included in the second-generation Eu-

rocode [7] for longitudinally stiffened panels with closed-

section stiffeners subjected to compression stresses can 

be summarised as follows: 

- When α ≥ 2; the reduction factor for plate-like

buckling ρp has to be determined according to the

Müller curve or 12.4 (5) from [1].

- When α < 2; the reduction factor for plate-like

buckling ρp is determined according to the Winter

curve.

- The torsional stiffness of closed-section stiffeners

can be taken into account when calculating the

critical plate buckling stress.

- The reduction factor for column-like behaviour χc

is determined according to EN 1993-1-5 [1].

- Interpolation should be performed between the

reduction factor for plate-like buckling and the re-

duction factor for column-like buckling to deter-

mine the final reduction factor ρc according to Eqs.

(14, 15).
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where σcr,p and σcr,c are the elastic critical plate buckling 

stress and the column buckling stress, respectively. For 

stiffened panels with closed-section stiffeners under longi-

tudinal stresses, the parameters V and P are defined as 

follows: 

( )
2/3

1 and 1.0pV P
−

= + = (16) 

A numerical parametric study based on a geometrically 

and materially nonlinear analysis with initial imperfections 

(GMNIA) was performed by Pourostad and Kuhlmann [6] 

for a wide range of longitudinally stiffened plates. The pro-

cedure and results of the study are described in detail in 

[6]. In this paper, the results of the numerical parametric 

study are compared with the previously described new de-

sign approach from [7]. For this purpose, two different 

methods were used to determine the elastic critical plate 

buckling stress σcr,p, namely the new analytical determina-

tion described in section 2.2 and the numerical determi-

nation described in section 3.  

The direct comparison of the loading factors for both meth-

ods is shown on the left side of Figures 5 and 6. The nu-

merically obtained loading factor ρc,FEM is compared with 

the loading factor calculated using the new design ap-

proach, namely ρc,1 and ρc,2. To achieve ρc,1,  the elastic 

critical plate buckling stress was calculated with the ana-

lytical equation from section 2.2, to achieve ρc,2, the elastic 

critical plate buckling stress was determined numerically 

using a linear buckling analysis as in section 3. In both 

cases, the elastic critical column buckling stress was de-

termined according to EN 1993-1-1 [12]. 

The statistical analysis of the data is represented by his-

togram diagrams on the right-hand side of Figures 5 and 

6. These diagrams include the standard deviation and

mean value of the data as well as the vertical lines showing

the standard deviation, mean value plus and minus the

standard deviation. The analysis shows good agreement

with the numerical results for both methods. Determining

the resistance of stiffened panels based on the critical

stresses through an analytical formula results in smaller

standard deviations and mean values compared to the lin-

ear buckling analysis.

a) direct comparison b) frequency distribution 

Figure 5 Comparison of the numerical results with the results of the new design approach where the elastic critical plate buckling stress is 

determined analytically according to section 2.2 
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a) direct comparison b) frequency distribution 

Figure 6 Comparison of the numerical results with the results of the new design approach where the elastic critical plate buckling stress is 

determined numerically according to section 3 

5 Conclusions and outlook 

Recent research studies have shown that the positive ef-

fects of the torsional stiffness of closed-section longitudi-

nal stiffeners can be taken into account when calculating 

the ultimate resistance of plates by using alternative in-

terpolation functions. Therefore, this paper presents a new 

analytical equation for the estimation of the elastic critical 

buckling stress for longitudinally stiffened plates taking 

into account the torsional inertia of the stiffeners. It allows 

the estimation of the plate buckling stress without the use 

of numerical tools. 

The application of the analytical formula to determine the 

critical plate buckling stresses results in a similar ultimate 

resistance of panels compared to the complicated and ex-

pensive alternative using linear buckling analysis. How-

ever, the current formula is proposed only for cases with 

more than three uniformly distributed stiffeners. It is nec-

essary to extend the scope of the formula to cases with 

one or two stiffeners. 
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