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A B S T R A C T   

Soil erosion is expected to increase in the future due to climate change. Soil erosion models are useful tools that 
can be used by decision makers and other stakeholders to deal with soil erosion problems or the implementation 
of soil protection measures. Most of the modelling applications are using Universal Soil Loss Equation (USLE)- 
type models. In this study, we evaluate the applicability of the Erosion Potential Model (EPM) and its modified 
version (mEPM) for the estimation of the gross and net erosion rates at a global scale. The sensitivity analysis 
shows that the model results have the highest variability due to the soil protection (land cover) coefficient 
followed by the soil erodibility parameter. The models’ evaluations indicate that that the EPM cannot be applied 
to cold regions while the mEPM overcomes this issue. The erosion rates based on the EPM were 1.5–2.5 times 
larger than the ones obtained from the mEPM. Increasing the number of catchment properties as inputs to the 
model may help in improving the performance of the tested EPM and mEPM. Moreover, a comparison of net soil 
losses by mEPM with long-term suspended sediment yield data for 116 catchments located around the globe 
indicates a median bias of less than 10%, although the bias for around 1/3 of catchments was above 100%. 
Furthermore, a direct comparison with other soil erosion models such as USLE-type models is not possible since 
the EPM and mEPM do take into consideration other processes such as soil slumps and gully erosion and not just 
sheet and rill erosion. Therefore, as expected, the gross erosion rates by the EPM and mEPM are higher compared 
to the USLE-type models. Hence, the mEPM, despite its limitations, could be regarded as an interesting approach 
for the describing erosion processes around the globe and should be further tested using small- and medium-sized 
catchments from various climate zones.   

1. Introduction 

Soil erosion is one of the major environmental threats (Amundson 
et al., 2015) that is forecasted to diffusely increase under the impact of 
climate change (Borrelli et al., 2022; Panagos et al., 2022). As soil 
erosion is a major threat for food security and sustainable provision of 
ecosystem services, global assessments may provide scientific evidence 
about the magnitude of the problem. Soil erosion assessments are also 
included in the recent Intergovernmental Panel for Climate Change 
(IPCC) reports on the impacts of climate change in land degradation (e. 
g., Chapter 4 of the Special Report on Climate Change and Land). Despite 
the recent United Nation efforts (Global Soil Erosion map project, (FAO, 
2019)), no coordinated supranational soil erosion monitoring 

programme exists yet. In many parts of the world soil erosion moni-
toring is not performed regularly, therefore global modelling applica-
tions can be useful to understand the extent of soil erosion and its impact 
on the environment. Moreover, global modelling applications are also 
needed to identify areas that are most vulnerable to soil erosion and 
design conservation and mitigation measures against soil erosion (Bor-
relli et al., 2021). The motivation in this research comes from the need to 
provide scientific evidence about the global soil erosion issue and 
contribute to better accessing the extent of soil erosion in most vulner-
able zones. 

Therefore, current knowledge on soil erosion dynamics around the 
globe mostly relies on models, which despite limitations (Alewell et al., 
2019), proved to be useful tools being used by different stakeholders for 
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land management needs to reach soil conservation objectives (USDA, 
2019). Additionally, large-scale soil erosion models can be used to 
highlight large-scale erosion hotspots across the globe, an information 
useful to support local scale monitoring efforts and, in turn, to evaluate 
and refine the performance of soil erosion protection measures (Mont-
gomery, 2007). However, it is relevant to remark that most of soil 
erosion models currently in use (Borrelli et al., 2021) were originally 
developed for small-scale assessments or using data from small experi-
mental plots (Renard et al., 1997). Hence, these models need to be fully 
evaluated and tested (Alewell et al., 2019; Bezak et al., 2021; Kirkby 
et al., 1996). 

It is also worth stressing that most of the the global soil erosion 
modelling applications were carried out using Universal Soil Loss 
Equation (USLE) or its revised versions (e.g., RUSLE) (Batjes, 1996; 
Borrelli et al., 2017; Yang et al., 2003) (Borrelli et al., 2021). Only a few 
global or continental studies applied models other than those belonging 
to the USLE-type, such as Water Erosion Prediction Project (WEPP) 
(Laflen et al., 1991), WaTEM/SEDEM (Van Oost et al., 2000), Rangeland 
Hydrology and Erosion Model (RHEM) (Nearing et al., 2011) or Pan- 
European Soil Erosion Risk Assessment (PESERA) (Kirkby et al., 
2008). Therefore, other soil erosion model types need to be thoroughly 
tested for large-scale soil erosion assessments. On top, other soil erosion 
processes (e.g., gully erosion, wind erosion) must be addressed also at 
global scale. The concept of multiple soil erosion models’ application in 
the same location has been tested in limited studies (Batista et al., 2019; 
Keller et al., 2021; Li et al., 2017). The lack of studies that focus on 
global comparison of soil erosion models is even more challenging 
(Quinton et al., 2010). Moreover, many modelling applications lack 
adequate model evaluation (e.g., lack of data for validation or evalua-
tion) and can yield highly uncertain soil erosion estimates. In cases 
where no data for model evaluation is available, a viable alternative may 
be to adopt multi-model assessments, compare the results and evaluate 
the degree of consistency of estimates. Such multi-model approaches are 
used in climate change research (Duan et al., 2019), in which future 
modelling scenarios are compared (e.g., Coupled Model Intercompar-
ison Project Phase 6 (CMIP6)). We believe that the soil erosion model-
ling community should also make a similar step towards 
intercomparison of global multi-models, gaining new insights from the 
advantages and disadvantages found in the compared models. The topic 
was also highlighted several times during the Workshop on soil erosion 
for Europe (JRC, 2022) organised by the EU (European Union) Soil 
Observatory (EUSO). 

Keeping in mind the limited number of soil erosion modelling ap-
plications in developing regions (Borrelli et al., 2021), nowadays large- 
scale soil erosion modelling assessments are often the only resource 
available for most endangered regions to support policy decisions and 
the implementation of mitigation strategies. Accordingly, we believe 
that it would be important to have this knowledge based on multiple soil 
erosion models, rather than only on USLE-type models. Hence, the 
Erosion Potential Model (EPM) that also accounts for other erosion 
processes (e.g., gully erosion or soil slumps) and not just sheet and rill 
erosion (e.g., USLE-type models) can be an interesting option to estimate 
global and large-scale soil erosion rates especially because these pro-
cesses can be important for the erosion-sediment balance at large scales. 
The main aim of this study is to evaluate the applicability of the Erosion 
Potential Model (EPM) and its modified version (mEPM) (in combina-
tion with selected sediment delivery ratio equations (SDR)) at global 
scale. Specific objects were to evaluate (i) the sensitivity of the EPM with 
respect to the input data; (ii) the applicability of EPM and mEPM models 
in a GIS-environment for global soil erosion assessment and the 
comparability to USLE type-models; (iii) the performances of the EPM 
and mEPM models (in combination with SDR) based on the measured 
suspended sediment yield data from 116 catchment around the globe. To 
sum up, two most novel aspects of this study are: (i) testing the appli-
cability of two models for global soil erosion assessment and (ii) making 
important steps towards multi-model soil erosion assessments for further 

research. 

2. Data and methods 

2.1. Erosion potential model (EPM) and modified EPM (mEPM) 

The original name of the EPM that is currently applied in GIS envi-
ronment was the Gavrilović method (also named model or equation), 
named after Slobodan Gavrilović that developed the predictive method 
back in the 60′s and 70′s based on field research in ex-Yugoslavia 
(Gavrilović, 1972, 1970, 1962; Gavrilovic, 1988; Gavrilovic et al., 
2008). The EPM was developed and calibrated using experimental field 
data from the Morava River catchment in Serbia, which is characterized 
by typical continental climate with maximum and minimum tempera-
tures in summer and winter, respectively. According to Micić Ponjiger 
et al. (2023), a large number of erosion maps of former Yugoslav 
countries were prepared in the 1980s based on the expert judgment of 
field data and maps generated via the erosion potential method (EPM) 
(Gavrilović, 1972) as one of the most widely accepted and applied 
empirical models in the Balkan region, South, South-East, and Central 
Europe, as well as the Middle East, North Africa and parts of South 
America. Consequently, the model was most frequently applied in the 
Mediterranean region (e.g., countries of the former Yugoslavia, North 
Africa, Italy, Greece) (Abdullah et al., 2017; Aleksova et al., 2023; 
Dominici et al., 2020; Dragičević et al., 2016; Efthimiou et al., 2017; El 
Mouatassime et al., 2019; Gocić et al., 2021, 2020; Karydas et al., 2014; 
Kostadinov et al., 2017; Mallinis et al., 2009; Manojlović et al., 2018; 
Nikolic et al., 2019; Ouallali et al., 2020; Spalevic et al., 2020, 2017; 
Stefanidis and Stathis, 2018), although applications in other climates (e. 
g., Brazil, Iran, Nepal) can also be found (Chalise et al., 2019; da Silva 
et al., 2014; Darvishan et al., 2017; de Vente and Poesen, 2005; Lense 
et al., 2019; Mohammadi et al., 2021; Neto et al., 2022; Sabri et al., 
2022; Sakuno et al., 2020; Tavares et al., 2021). 

The model is structured as a semi-quantitative method that relates 
upland soil erosion (i.e., gross erosion) with sediment yield (i.e., net 
erosion) using the sediment delivery concept (de Vente and Poesen, 
2005). The EPM results are averaged (annual) soil erosion rates and the 
model cannot be used to estimate event-based erosion (Karydas et al., 
2014). It should be noted that the EPM model accounts for a variety of 
erosion processes driven by water such as sheet, rill, interrill, gully 
erosion as well as some other processes such as soil slumps and bank 
erosion (Gavrilović, 1970; Gavrilovic, 1988; Gavrilovic et al., 2008). A 
complete list of processes that were considered during the development 
of the model was not made available by Gavrilović (1970). However, we 
may understand that the model does not account for debris material 
mobilized by large mass movements such as debris flows or deep-seated 
landslides. Therefore, the method is not limited only to sheet and rill 
erosion as in case of the USLE-type models (Renard et al., 1997). It 
should be noted that several additional modules were developed such as 
a methodology for torrent classification (Gavrilovic et al., 2008). 
Average annual gross soil erosion (W) [m3] due to several erosion pro-
cesses (e.g., sheet, rill, gully, bank erosion) and smaller soil slumps can 
be calculated as: 

W = T*Pa*π*Z3/2*A (1)  

where A is catchment area [km2], Pa is mean annual precipitation [mm], 
T is temperature coefficient defined as: 

T =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ta

10
+ 0.1

√

(2)  

where Ta is mean annual air temperature [◦C]. Equation (2) is only valid 
for Ta above − 1 ◦C. This means that the EPM cannot be applied to polar 
regions, large parts of the continental climate zones and for high- 
mountain ranges such as Himalayas where mean annual temperature 
can also be below − 1 ◦C. 
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Additionally, Z [-] is erosion coefficient that can be calculated as: 

Z = Y*X*
(

ρ+
̅̅̅
S

√ )
(3)  

where Y is a soil erodibility coefficient [-] (Table 1), X is a soil protection 
coefficient [-] (Table 2), ρ is a coefficient of type and extent of erosion 
and slumps [-] (Table 3) and S is the mean slope of the investigated 
catchment [m/m]. Another important aspect is related to the Y, X and ρ 
coefficients, which in some previous studies were often reported in very 
simplified way, while the original Gavrilović method (Gavrilović, 1970) 
used much more detailed description of these coefficients (Table 1, 
Table 2 and Table 3). Hence, as in most applications of large-scale 
models, also in this case the original methods that were developed 
several decades ago are often associated with misuse, simplifications or 
misunderstanding that can propagate through scientific literature (Chen 
et al., 2023; Chen and Bezak, 2022; Chen and Huang, 2022), which can 
lead to greater uncertainty of the results. Moreover, it should be noted Z 
coefficient can also be used for erosion and torrent categorization 
(Gavrilovic et al., 2008) (Table 4). This kind of erosion classification can 
be useful to detect large-scale erosion hotspots around the globe. The 
workflow of applying the EPM at global scale is shown in Fig. 1. 

Moreover, Gavrilović also developed an equation for the estimation 
of the sediment delivery ratio (SDR) that is based on the catchment 
characteristics (Gavrilović, 1970) and that can be used to calculate net 
erosion rates taking into account the gross rates (equation (1) and SDR 
(ξ, equation (4) [-] (theoretically the range of the equation is from 0 to 
1): 

ξ =

̅̅̅̅̅̅̅̅̅̅
O*D

√

0.25*(L + 10)
(4)  

where O is catchment perimeter [km], D is mean difference in the 
elevation of the catchment [km] and L is catchment length [km]. In 
relation to this equation (i.e., Eq. (4), the definition of the D variable is a 
bit unclear. Some authors defined it as the average elevation of the 
catchment (de Vente and Poesen, 2005), others as the difference be-
tween maximum and two times minimum elevation of the catchment 
(Efthimiou et al., 2016) and some as the difference between average and 
minimum elevation (Lense et al., 2020). Based on the definition avail-
able in the original Gavrilović (Gavrilović, 1970), we also believe that 
the later definition interprets best what was meant in the original pub-
lication (Gavrilović, 1970). Hence, this definition was used in this study 
as well. Moreover, we also found an additional limitation related to Eq. 
(4) as it can yield SDR larger than one for high-gradient streams. For 
example, if we assume that we have a hypothetical catchment with 
catchment area of around 50 km2 of circular shape (i.e., catchment 
radius is approx. 4 km). In case that slope of the catchment is around 20 
%, the calculated SDR using Eq. (4) is around one while this can higher if 
the slope exceeds 20 %. Therefore, Eq. (4) should be applied with 
caution and should be further tested with an additional catchments 

dataset that include small, medium, and large catchments. The sediment 
yield or net erosion rates (G) can be calculated as G = ξ*W. 

Additionally, we also applied a modified EPM (mEPM) that was 
developed for the assessment of soil erosion rates in Slovenia after the 
original version of the EPM (Pintar et al., 1986): 

W = 20*Pd*Z3/2*A (5)  

Table 1 
Basic characteristics of Y coefficients according to the original description of the 
EPM model (Gavrilović, 1970).  

Y description – Soil erodibility Y value 
(coefficient) 

Sand, gravel and loose soils  2.0 
Loess, tuffs, salt marshes, steppe soils  1.6 
Disintegrated limestones and marls  1.2 
Serpentines, red sandstones, flysch deposits  1.1 
Podzol soils and alike; decomposed shales: mica-schist, gneiss slates, 

clay slates  
1.0 

Core limestones and shales, red rocks and humus-silicate soils  0.9 
Cambisol and mountain lands  0.8 
Vertisol, humogley and wetlands  0.6 
Chernozem and alluvial soils of good structure  0.5 
Bare compact eruptives (vulcanic origin)  0.25  

Table 2 
Basic characteristics of X coefficient according to the original description of the 
EPM model (Gavrilović, 1970).  

Additional info X description – soil protection X value 
(coefficient) 

Before implementation of 
anti-erosion measures 

Completely bare, uncultivable 
land (bare land)  

1.0 

Arable land with plowing up or 
down hill  

1.0 

Orchards and vineyards, without 
ground vegetation  

0.7 

Mountain pastures and drylands  0.6 
Meadows, fields and similar 
agricultural crops  

0.4 

Degraded forests and thickets 
with eroded soil  

0.6 

Forests or thickets with good 
structure and vegetation  

0.05 

After implementation of 
anti-erosion measures 

Plows with contour plowing 
(isohypsis direction)  

0.6 

Arable land well cared for and 
protected by mulching  

0.5 

Contour strip cultivation with 
crop rotation (fields)  

0.45 

Contour orchards and vineyards  0.3 
Terracing of arable land, terraces 
and tiers  

0.35 

Weeding of bare land and 
melioration of pastures and 
drylands  

0.3 

Construction of contour trenches 
of medium density  

0.25 

Retardation waterways and 
micro-accumulations  

0.25 

Afforestation with construction 
of tiers  

0.1 

Channel regulation, dam 
construction and channelization  

0.7  

Table 3 
Basic characteristics ρ coefficient according to the original description of the 
EPM model (Gavrilović, 1970).  

ρ description –type and extent of erosion and slumps ρ value 
(coefficient) 

Watershed completely under gully erosion and primordial processes 
(deepening, incision, slumps)  

1.0 

About 80 % of the watershed is under furrow and gully erosion  0.9 
About 50 % of the watershed is under furrow and gully erosion  0.8 
The entire watershed is subject to surface erosion: disintegrated 

debris from embankments, some furrows and gullies, as well as 
strong karst erosion  

0.7 

The entire watershed is under surface erosion, but without furrows 
and gullies (deep processes) and the like  

0.6 

Land with 50 % of the area covered by surface erosion, while the rest 
of the watershed is preserved  

0.5 

Land with 20 % of the area covered by surface erosion, while 80 % of 
the watershed is preserved  

0.3 

The soil in the watershed has no visible signs of erosion, but there are 
minor slips and slides in watercourses  

0.2 

Watershed without visible signs of erosion, but mostly under arable 
land  

0.15 

An area without visible signs of erosion, both in the watershed and in 
the watercourses, but predominantly under forests and perennial 
vegetation (meadows, pastures, etc.)  

0.1  
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where A and Z parameters are the same as in the case of the original EPM 
(Eq. (1)) and Pd is maximum daily precipitation [mm]. Hence, the mEPM 
does not use the air temperature coefficient; the developers of this 
equation considered the air temperature less important for the erosion 
processes and the estimated rates in Slovenia (Pintar et al., 1986). 
Hence, this model was adapted for the soil erosion estimates in smaller 
typical more torrential catchments located in Alpine zone and temperate 
continental climates. The mEPM does take into consideration the same 
processes as the EPM and the result of Eq. (5) are gross erosion rates. The 
mEPM has been applied for local soil erosion assessments related to 
water engineering projects in Slovenia (Hrvatin et al., 2019; Petkovšek, 
2000). Therefore, it was applied in limited cases. However, the 
improved version of the EPM is available: the IntErO model that can 
calculate the soil erosion intensity and runoff at the catchment scale 
(Chalise et al., 2019; Mohammadi et al., 2021; Neto et al., 2022; Spa-
levic, 1999; Spalevic et al., 2000; Tavares et al., 2021) 

2.2. EPM and modified EPM input data 

The original equations of EMP and mEPM were adapted according to 
the data availability at global scale (Table 5). For the maximum daily 
precipitation several different products were available (GPCC (i.e., daily 
data, resolution of 0.5◦), PPDIST (i.e., probability distribution dataset, 

resolution of 0.1◦), ERA5 (i.e., daily data, resolution of 0.1◦), among 
others). After testing them, we selected ERA5 based on the best spatial 
resolution and best representation of the extreme values. Compared to 
USLE-type models that use rainfall erosivity parameter (e.g., Chen et al., 
2023; Lukić et al., 2019; Micić Ponjiger et al., 2023) the EPM and mEPM 
use simple representation of the water erosion driving force. A second 
such example is the representation of the landslides or slumps activity 
that was tested using landslide mobilization rates map (Broeckx et al., 
2020) and landslides susceptibility map (Stanley and Kirschbaum, 
2017). However, stronger correlation was found between landslides 
susceptibility map and sediment yield data (Section 2.3) than between 
landslides mobilization rates map and sediment yield data. Two 
different gridded data products were generated in relation to ρ coeffi-
cient: a first one for erosion (e.g., sheet, rill, gully) and a second one for 
landslides or slumps. As EPM considers both factors together in ρ coef-
ficient, we used 0.3 wt for landslide or slumps activity and 0.7 wt for 
erosion activity (i.e., ρ = 0.7*erosion + 0.3*slumps). This selection was 
done since impact of erosion is more represented in the ρ coefficient and 
it was given higher importance in the original Gavrilović method 
(Gavrilović, 1970). Additionally, we also checked the dependence be-
tween sediment yield (Section 2.3) and erosion and landslide suscepti-
bility map, and the results confirmed the previously mentioned 
assumption of the relative importance of these two factors. The gridded 
input data (Table 5) were classified according to the requirements of 
EPM and mEPM coefficients (Table 1, Table 2 and Table 3) (Supple-
ment). It should be noted that besides information shown in Table 1, 
Table 2 and Table 3 we also used more general descriptions of the X, Y 
and ρ parameters as shown by Efthimiou et al. (2016) since in some cases 
it was difficult to find direct connection between descriptions shown in 
Table 1, Table 2 and Table 3 and data source values (Supplement). 

All the calculations were done at 30 arcsec resolution because many 
products were in this resolution (Table 5). All the input data was 
resampled to this resolution using B-Spline interpolation included in the 
SAGA GIS software (SAGA GIS, 2022). After all the input data was 
resampled to the uniform spatial resolution, the final calculations were 
conducted using the grid calculator function in SAGA GIS (SAGA GIS, 

Table 4 
Classification of the erosion classes according to the Z coefficient (adopted after 
Gavrilovic et al. (2008)).  

Erosion category Z coefficient value 

Excessive erosion (gullies, rills, rockslides, etc.), 
category I 

Z > 1 (mean value of 1.25) 

Severe erosion (a bit milder than excessive), 
category II 

0.71 < Z < 1 (mean value of 
0.85) 

Medium erosion, category III 0.41 < Z < 0.7 (mean value of 
0.55) 

Slight erosion, category IV 0.2 < Z < 0.4 (mean value of 
0.3) 

Very slight erosion, category V Z < 0.19 (mean value of 0.1)  

Fig. 1. Workflow of the global application of the EPM with some of the main calculations steps in the GIS system. Input data used is shown in Table 5.  
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2022). For the input layers that were resampled, we also evaluated the 
impact of this computational step on the results using the average and 
standard deviation. In all the cases, the impact was minor. For example, 
the Pd at 0.1◦ resolution the mean global value was 59.8 mm with a 
standard deviation of 45.7 mm while the resampled data at 30 arcsec 
resolution has the same mean value (i.e., 59.8 mm) and slightly smaller 
standard deviation (i.e., 45.0 mm). It should be noted that the resam-
pling has an impact at local scale but since the focus of this study was to 
access the performance at larger (i.e., continental and global) scales, we 
argue that such impact is less significant than the differences in the 
original spatial resolution of the selected input data. For the SDR cal-
culations the elevation difference (i.e., D in Eq. (4) was calculated based 
on the EarthEnv dataset (Amatulli et al., 2018) with a resolution of 10 
km. As the proxy for catchment length (i.e., L in Eq. (4) we used the 
maximum polygon diameter calculated as maximum distance between 
two polygon part’s vertices using SAGA GIS software (SAGA GIS, 2022). 

Additionally, for the evaluation of the continental soil erosion rates 
we used the Hydrologic Derivatives for Modeling and Applications 
(HDMA) database where catchment boundary data are available for all 
continents (Verdin, 2017). This dataset contains several raster and 
vector layers such as flow direction, catchment boundaries or stream 
network derived from a hybrid digital elevation model using three data 
sources (Verdin, 2017). The database is suitable for continental-scale 
modelling (Verdin, 2017). The streams and catchments are defined 
based on the Pfafstetter codes and using a hierarchical numbering sys-
tem (Verdin, 2017). In total this dataset contains around 295,000 
catchments with average catchment area of around 450 km2 in Asia and 
Africa and around 230 km2 in Europe and South America. The average 
catchment size in North America and Australia with Oceania was around 
290 km2 and 140 km2, respectively. 

2.3. Sediment yield data 

To evaluate the results of our global assessments, we compared the 
estimates of the EPM and mEPM against a subset (n = 116) of sediment 
transport data collected by Grill et al. (2019). In total 40, 22, 6, 22, 14 
and 12 catchments were in Africa, Asia, Australia with Oceania, Europe, 
North America, and South America, respectively. This allowed us to 
cover around approx. 30 million km2 (i.e., around 20 % of the Earth’s 
surface land) while selected catchments ranged from around 400 km2 to 
approximately 3.7 million km2. We also investigated relationship 

between EPM and mEPM model performance in relation to the Köppen- 
Geiger climate classification (Kottek et al., 2006; Peel et al., 2007), as 
shown in Fig. 2. Moreover, 19, 30, 14, 52 and 1 catchment were in 
Continental, Tropical, Dry, Temperate and Polar climate zones, respec-
tively (Fig. 2). To better understand the patterns related to under- and 
over-estimation of the measured sediment yield data by the EPM and 
mEPM we applied the K-means clustering algorithm implemented in 
Orange software (Arthur and Vassilvitskii, 2007; Demšar et al., 2013). 
As target variable bias between observed and modelled sediment yield 
data for 116 catchments was used and all the relevant data (e.g., lati-
tude, longitude, catchment area, mean discharge, number of dams per 
catchment, climate zone, max and min elevation) were used as features 
within the Orange software (Demšar et al., 2013). Number of clusters 
were set to 4, initialization was done with KMeans++ and 10 re-runs 
were done with maximum 300 iterations. 

2.4. Sensitivity analysis 

The sensitivity analysis of the specific EPM and mEPM factors was 
performed for a range of the coefficients (Table 1, Table 2 and Table 3). 
More specifically, we used the Sobol sensitivity method (Sobol′, 2001), 
implemented in R through the Sensitivity package (Iooss et al., 2021). 
Maximum and minimum ranges of parameters were determined based 
on the results of a literature review (Table 1, Table 2 and Table 3 and 
previous papers that applied these models (Abdullah et al., 2017; 
Dragičević et al., 2016; Efthimiou et al., 2017; Gocić et al., 2020; Kos-
tadinov et al., 2017; Mallinis et al., 2009; Manojlović et al., 2018)). A 
uniform distribution was used to generate a sequence of parameters for 
10,000 model runs using different input parameters for a fixed value of 
the catchment area A, since it was found that selection of the catchment 
area does not have a significant impact on the sensitivity analysis results. 
For example, for the temperature (T) parameter a uniform distribution 
of values between 0 ◦C and 35 ◦C was used. The ranges of parameters for 
the sensitivity analysis were as follows: 400–4000 mm, 0.1–1, 0.05–1, 
0.25–2 and 0.01–0.5 m/m for Pa, ρ, X, Y and S, respectively. Only first 
order in the ANOVA decomposition (Iooss et al., 2021) was investigated 
since the EPM is simple model in terms of mathematical equations 
applied and computational demands. 

3. Results and discussion 

3.1. EPM and mEPM results 

Fig. 3 shows gross soil erosion rates using the EPM and mEPM with 
the consideration of the HDMA dataset for the delineation of the 
catchment boundaries. Hence, the catchment-averaged erosion rates 
based on the EPM and mEPM result from the mean grid cell values per 
each catchment are shown in Fig. 3. The EPM yields, on average, higher 
erosion rates than the mEPM and it is not applicable to several colds 
regions (i.e., locations where Ta is below − 1 ◦C since Eq. (2) is only valid 
for Ta above − 1 ◦C) around the globe (Fig. 3). More specifically, the EPM 
yields higher (1.5–2.5 times) erosion rates compared to the mEPM 
(Fig. 3). Table 6 shows gross erosion rates using the mEPM that has 
wider applicability compared to EPM. It should be noted that results for 
the EPM are not shown because the method cannot be applied to cold 
regions, consequently there are several regions in Asia, North America, 
and Europe where averaged continental rates cannot be calculated. 

3.2. Sensitivity analysis 

For a fixed value of catchment area, it was found that the output of 
the EPM method is most sensitive to the X and Y coefficients followed by 
Pa and ρ (Fig. 4). Hence, air temperature and slope have a smaller effect 
on the results of EPM. The results of this sensitivity analysis are in line 
with Dragičević et al. (2017) who conducted the sensitivity analysis of 
EPM in the Dubracina catchment (Croatia); i.e., the highest sensitivity is 

Table 5 
Summary of gridded data used as input to the EPM and mEPM.  

Parameter [units] Data source Spatial 
resolution or 
scale 

Reference 

Mean annual air 
temperature T0 [◦C] 

WorldClim 2.1 
(1970–2000) 

30 arcsec (Fick and 
Hijmans, 2017) 

Soil protection 
coefficient X [/] 

Copernicus Land 
Cover 

0.1 km (Copernicus, 
2020) 

Soil erodibility 
coefficient Y [/] 

Glim v1.1 1:35 000 000 (Hartmann and 
Moosdorf, 2012) 

Type and extent of 
erosion and slumps 
coefficient ρ [/] 

GLASOD 1:10 000 000 (ISRIC, 1990) 

Type and extent of 
erosion and slumps 
coefficient ρ [/] 

NASA Landslide 
Susceptibility map 

30 arcsec (Stanley and 
Kirschbaum, 
2017) 

Mean annual 
precipitation Pa 

[mm] 

WorldClim 2.1 
(1970–2000) 

30 arcsec (Fick and 
Hijmans, 2017) 

Maximum daily 
precipitation Pd 

[mm] 

ERA5 
(2015–2020) 

0.1◦ (Muñoz-Sabater 
et al., 2021) 

Slope [m/m] EarthEnv 1 km (Amatulli et al., 
2018) 

Elevation [km] EarthEnv 1 km (Amatulli et al., 
2018)  

N. Bezak et al.                                                                                                                                                                                                                                   



Catena 234 (2024) 107596

6

Fig. 2. Location of selected catchments (black polygons) and the Köppen-Geiger climate classification (Kottek et al., 2006; Peel et al., 2007).  

Fig. 3. Global gross soil erosion rates according to the EPM (above) and mEPM (below) with the consideration of the HDMA dataset for the catchment boundaries.  

N. Bezak et al.                                                                                                                                                                                                                                   



Catena 234 (2024) 107596

7

for the X and Y parameters while the impact of air temperature is smaller 
than precipitation. Renard and Ferreira (1993) indicated the importance 
of performing the sensitivity evaluation in soil erosion modelling 
studies. Since most of the global-scale soil erosion modelling applica-
tions are based on the USLE-type models it is interesting to compare the 
sensitivity results of the EPM with the USLE-type models. Only limited 
number of studies evaluated the sensitivity of the USLE-type models. For 
example, Odongo et al. (2013) evaluated the sensitivity of the MUSLE 
(Williams and Berndt, 1977) model using data for a specific catchment 
in Kenya and found that conceptual factors (i.e., location specific pa-
rameters that impact the sediment yield) were contributing to the 
around two thirds of the variability in the output sediment yield results. 
Moreover, Estrada-Carmona et al. (2017) and Panagos et al. (2020) 
evaluated the sensitivity of the RUSLE model and indicated the high 
importance of the land cover and topography factors. Hence, land cover 
parameter is particularly important both in EPM and USLE-type models 
while there is some difference in other parameters such as slope that is 
less important in the EPM compared to USLE-type models. Parameters 
with higher sensitivity should be given higher priority in the parame-
ter’s estimation process. 

3.3. EPM and mEPM evaluation using sediment yield data 

For the evaluation of the EPM and mEPM (in combination with SDR) 
we used the data from 116 catchments (Fig. 2) around the globe as 

described in section 2.3. Therefore, limitations related to Eq. (2) mean 
that EPM can only be applied to tropical, arid, and warm temperate 
climate zones and not to polar regions and high-mountain ranges (Fig. 2, 
Fig. 3). The mEPM does overcome this issue since it does not consider 
the air temperature coefficient. This means that the mEPM is more 
suitable for global scale application compared to the EPM. The EPM also 
includes methodology for the classification of erosion classes based on 
the calculated Z factor (Fig. S1). For example, Aleksova et al. (2023) 
used the Z factor to evaluate the erosion and landslides risk at the 
catchment scale. The calculated global Z factor could be used to predict 
large-scale erosion hotspots or for comparison of different catchments 
and selection of more critical ones where detailed soil erosion studies 
need to be conducted (Supplement, Fig. S1). The Z factor spatial patterns 
(Fig. S1) are like the ones that are determined by some other soil erosion 
models although the processes considered are not the same (Borrelli 
et al., 2017; Naipal et al., 2015; Panagos et al., 2021). 

Given the above-mentioned limitations, a comparison between 
measured annual (long-term averages) suspended sediment yield data 
and net erosion rates was done only using the mEPM. Therefore, for all 
selected catchments (Section 2.3) gross and net erosion rates were 
calculated using the mEPM (Eq. (5). We applied the Eq. (4) to selected 
116 catchments (section 2.3) and we found that SDR ranges between 0.1 
and 0.8. SDR values above 0.6 or 0.7 can be regarded as relatively high 
(Lu et al., 2006), especially because we selected large catchments for the 
validation of the EPM and mEPM (i.e., catchment areas ranging from 
400 km2 to 3.7 million km2 with mean catchment area of 0.25 million 
km2). Hence, such large catchments are usually associated with much 
lower SDR values (Lu et al., 2006; Wu et al., 2018). It should be noted 
that the SDR concept is subjected to potential uncertainties due its black- 
box nature and spatial and temporal lumping (Walling, 1983). However, 
many improvements related to the SDR concept have been made in 
recent years in respect to the representation of the spatial sediment 
delivery patterns. This was done with the introduction of the novel 
concepts such as sediment connectivity (Bracken et al., 2015; Hamel 
et al., 2017) or spatial representation of the sediment delivery concept 
(Ali and De Boer, 2010). Therefore, simple equations such as the one 

Table 6 
Estimated global soil erosion rates using the mEPM.  

Continent Gross mEPM (t ha− 1 year− 1) 

Asia  6.7 
Europe  6.5 
Africa  5.3 
N America  4.2 
S America  7.8 
Australia (with Oceania)  10.9 
Mean  6.4  

Fig. 4. Results of the sensitivity analysis using Sobol’s sensitivity method for the EPM using the methodology described in Section 2.4. The y-axis indicates the 
sensitivity of the specific EPM parameter and error bars show confidence intervals. Detailed description of parameters is shown in Section 2.1. 
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proposed by Gavrilović (Gavrilović, 1970) (i.e., Eq. (4)) may encounter 
some difficulties of parametrization and representativeness. Since the 
calculated SDR values using Eq. (4) were high we additionally tested an 
equation that does consider some rainfall-runoff processes occurring 
within the catchment that could have an important impact on the 
sediment delivery (Didoné et al., 2015; Wu et al., 2018; Williams and 
Berndt, 1977): 

SDR = 1.37*10− 11*A− 0.00998*
(

R
L

)0.363

*CN5.44 (6)  

where A is catchment area [km2], R is difference in catchment elevation 
[m], L is length of the catchment [km] and CN is Curve Number (Didoné 
et al., 2015; Walling, 1983; Wu et al., 2018). The CN parameter is often 
used in the hydrological rainfall-runoff studies and describes the runoff 
characteristics of the catchment (Banasik et al., 2014; Zema et al., 2017). 
It should be noted that average CN parameter (Jaafar et al., 2019) was 
used in the calculations. 

The Pearson correlation coefficient in first case (Fig. 5a) equals to 
0.81 (R2 = 0.66), which implies a strong correlation (Schober and 
Schwarte, 2018). Moreover, the median bias for the selected 116 
catchments is around 10 % which means that mEPM overestimates 
actual sediment load (Fig. 5, case a). In some catchments, the bias ex-
ceeds 100 %, while for others it is close to − 100 %. Additionally, 
applying the EPM instead of the mEPM would yield even larger bias 
since the EPM yields higher estimates compared to the mEPM (Fig. 3). 
Applying the Eq. (6) yields slight improvement in terms of agreement 
between observed suspended sediment rates and net mEPM for the 
selected 116 catchments (R2 = 0.68, case b) in Fig. 5) and the calculated 
SDR values are smaller compared to case b) (i.e., minimum, mean and 
maximum values equal to 0.08, 0.26 and 0.64, respectively). However, it 
should be noted that the reported correlation coefficients are depended 
on the size of catchments used for a comparison. Therefore, an addi-
tional comparison was made using observed and modelled specific yield 
data where catchment area was also considered. In this case, the median 
bias for the 116 catchments was around 9 % and − 8 % for cases a) and 

Fig. 5. Comparison between observed suspended sediment load (Section 2.3) and estimated net erosion rates for selected catchments using: a) the Eq. (4) and b) the 
equation including the CN parameter (Didoné et al., 2015) (Eq. (6). It should be noted that both x and y axis are shown in log-scale. In both cases the y = x line is 
also shown. 
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b), respectively. Moreover, for around 1/3 of the selected catchments 
the bias was more than 100 % or less than − 100 %. 

Additionally, we also evaluated the agreement between measured 
suspended sediment load and net erosion rates per climate zones. The 
best agreement was found for continental and temperate regions. The 
largest bias was detected for catchments located in the dry climate. 
Additionally, average bias for catchments located in tropical climate was 
also relatively large. Hence, besides continental and temperate climates, 
the EPM and mEPM are also often used in dry regions and some appli-
cations in tropical regions can also be found (e.g., Lense et al., 2020). 
Therefore, applicability of the EPM and mEPM in arid climate should be 
further evaluated and adjusted using additional validation datasets since 
erosion processes considered by the EPM and mEPM could not be the 
most relevant ones in arid climates. However, it should be noted that the 
number of catchments located in dry climate used in this study was low. 
Moreover, the applied K-means cluster analysis showed that two big 
clusters were identified by the algorithm combining most of the catch-
ments. First cluster combined mostly high-elevation catchments with 
maximum elevation above 2000 m.a.s.l. (and catchment areas less than 
106 km2) and the second cluster mostly lower elevation catchments with 
maximum elevation with less than 2000 m.a.s.l. Additionally, third 
cluster included mostly either very big catchments or catchments with 
high maximum elevation. While the last cluster included only a small 
number of catchments. Hence it is clear that the calculated biases can be 
partly related to the catchment characteristics meaning that future 
studies should give more focus on the investigation of the performance 
of the EPM and mEPM at meso-scale catchments where adequate sedi-
ment yield data is available. One example of such dataset is recently 
compiled EUSEDcollab dataset that could be used in future research to 
evaluate the EPM more robustly and mEPM at smaller scales (Matthews 
et al., 2023). 

3.4. Evaluation and comparison using other soil erosion models 

Additionally, the evaluation of the mEPM was also made at the 
continental scale using the HDMA dataset (Table 6). The calculated 
average gross soil erosion rates using the mEPM (Fig. 3) are like the 
global rates obtained by Naipal et al. (2015) using the adjusted RUSLE 
model (i.e., mean value of 6.5 ha− 1 year− 1 with adjusted S and R). On 
the other hand, for Europe much lower sheet and rill erosion rates were 
obtained by Cerdan et al. (2010) based on upscaling the data obtained 
from erosion plots (i.e., 1.2 t ha− 1 year− 1 for the whole CLC area). Also, 
the erosion rates calculated by RUSLE2015 (Panagos et al., 2015) (i.e., 
2.5 ha− 1 year− 1 for the European Union) and PESERA (Kirkby et al., 
2008) models for Europe (i.e., 1.5 ha− 1 year− 1 for most of the Europe) 
were much lower compared to mEPM results (Table 6). There is a sig-
nificant difference in the list of processes that mEPM and other models 
consider. For example, the USLE-type models account for sheet and rill 
erosion while PESERA model for rill and inter-rill erosion. On the other 
hand, EPM and mEPM do account for smaller soil slumps, gully erosion 
as well as some torrential processes occurring within the river network. 
Therefore, EPM and mEPM can be regarded as typical equations for 
description of a wider range of erosion processes and not just sheet and 
rill erosion. Hence, it can be regarded as an expected result that EPM and 
mEPM yield higher rates compared to previously mentioned model 
types. Moreover, some studies like the study conducted by Efthimiou 
et al. (2016) compared EPM with RUSLE model at catchment scale and 
both models indicated acceptable performance and were able to identify 
areas that are most susceptible to erosion and land degradation. How-
ever, both tested models underestimated measured sediment yield data 
and showed some shortcomings. 

Moreover, a comparison of the continental erosion rates obtained by 
Borrelli et al. (2020) indicated that the maximum (i.e., mean of all grid 
cells per continent) gross erosion rates based on the RUSLE model were 
obtained for South America followed by Asia, Africa, and Oceania where 
the average values for the later three were similar (Borrelli et al., 2020). 

In case of the mEPM (Table 6) the highest gross erosion rates were ob-
tained for Oceania followed by South America and Asia. A bit of dis-
crepancies in this continental comparison can be explained with the fact 
that the EPM and mEPM also take into consideration other processes 
such as soil slumps. More specifically, Africa is compared to Europe and 
other continents less susceptible to landslides according to the land-
slide’s susceptibility map used within this study (Stanley and Kirsch-
baum, 2017). Moreover, the gross mEPM rates for Europe are like the 
ones obtained by Borrelli et al. (2023) which considered the concurrent 
soil erosion processes in Europe (water, wind, gully erosion and erosion 
due to crop harvesting). 

4. Study limitations 

It should be noted that there are several limitations related to this 
study. Firstly, it should be noted that the spatial resolution of input 
datasets was not the same; therefore, the input data was either aggre-
gated or resampled to the same resolution (30 arcsec). As a result, a 
coarse gridded map was derived that shows the main large-scale erosion 
hotspots according to the applied mEPM (Fig. S1). The continental 
erosion rates shown in Fig. 3 and Table 6 are dependent on the size of the 
catchments (i.e., HDMA dataset used). However, preliminary analysis 
for Africa showed that the size of the catchments does not have signif-
icant impact on the continental erosion rates budgets. Secondly, the 
estimation of the EPM coefficients was done using expert knowledge. We 
did not perform any calibration using sediment data since the EPM pa-
rameters should be estimated based on the tabulated descriptions 
(Gavrilović, 1970). Therefore, in case of local studies where there is also 
sediment yield data available, EPM and mEPM could be calibrated to 
obtain more accurate soil erosion estimates. Hence, the main objective 
of this study was to critically evaluate the usefulness of the EPM and 
mEPM and estimate global erosion patterns without estimating erosion 
rates for specific small- and medium-scale catchments. Thirdly, the 
sediment yield data (section 2.3) was measured in different periods with 
different methods and different equipment. This means that also long- 
term sediment yield data represent rough approximation of the actual 
situation in the selected catchments and that actual sediment transport 
can vary from year to year. Not to neglect the human impacts on 
geomorphic processes (Cendrero et al., 2022) that have an impact on 
land–ocean sediment transfer by the world’s rivers (Walling, 2006). 
Moreover, the derived results should not be used at small spatial scales. 
At small-scales the EPM and mEPM model parameters should be cali-
brated using in-situ data. Lastly, there are some limitations related to the 
EPM and mEPM parameters description and Eq. (4) that were already 
discussed in the previous sections (i.e., 3.1–3.3). 

5. Conclusions 

The EPM can be applied globally in regions where mean annual 
temperature is above − 1 ◦C. Hence, this limits the suitability of this 
model in polar and parts of the continental climate zones and in high- 
altitude catchments. The mEPM overcomes this issue but its evalua-
tion using catchment sediment yield data indicated relatively large bias 
for selected catchments located in arid and tropical regions. Therefore, 
tested EPM and mEPM have potential limitations in case of global and 
large-scale assessments, as they have both been developed and tested for 
upland torrential processes in temperate humid climate. The Z factor 
(erosion coefficient), EPM and mEPM results can be used as an indicator 
of the large-scale erosion hotspots around the global (Fig. S1). The 
mEPM yields more realistic gross erosion rates than EPM and could be 
used for modelling of catchment-based erosion processes. It should be 
noted that the EPM and mEPM are not able to model the event-based 
erosion processes or yield seasonal predictions. 

The calculated net erosion rates for both EPM and mEPM depend on 
the selected equation for the estimation of the SDR. The equation (i.e., 
Eq. (4) proposed by Gavrilović (Gavrilović, 1970) yields relatively high 
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SDR estimates, especially for very large catchments. Moreover, for high- 
gradient catchments it can also yield a value of SDR above 1, which is an 
unrealistic value and care should be if this equation is to be further used. 
Including additional information in the estimation of the SDR like the 
hydrological Curve Number (CN) parameter can slightly improve the 
agreement between observed suspended sediment load data and net 
mEPM rates (Fig. 5). Moreover, applications of simple equations for the 
SDR assessment can yield uncertain results and more sophisticated ap-
proaches (i.e., sediment connectivity approach) should be tested in 
further studies. 

An evaluation at global and continental scale revealed that mean 
global rates obtained using the gross mEPM are higher than rates ob-
tained based on the USLE-type models, which can be regarded as an 
expected results due to the differences in the considered erosion 
processes. 

To sum up, EPM and mEPM have some potential to be used for large- 
scale erosion assessments. However, both methods also have several 
limitations. For example, due the characteristics of both methods the 
individual parameters (e.g., X or ρ) can have a significant impact on the 
derived erosion rates. The bias between modelled and observed valuers 
for some catchments can be large although the median values are less 
than 10 %. Therefore, additional evaluation should be performed in case 
of small and medium size catchments where model parameters could be 
calibrated using the sediment yield data. Finally, the mEPM produced 
more realistic results (compared to the EPM) which can be further 
improved in future model application by the soil erosion modelling 
community. Despite some limitations the results of this study could be 
used for soil erosion intensity evaluation and land use planning. 
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