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Abstract
Hydrological modelling, essential for water resources management, can be very complex in karst catchments with different

climatic and geologic characteristics. In this study, three combined conceptual models incorporating the snow module with

machine learning models were used for hourly rainfall-runoff modelling in the mostly karst Ljubljanica River catchment,

Slovenia. Wavelet-based Extreme Learning Machine (WELM) and Wavelet-based Regression Tree (WRT) machine

learning models were integrated into the conceptual CemaNeige Génie Rural à 4 paramètres Horaires (CemaNeige GR4H).

In this regard, the performance of the hybrid models was compared with stand-alone conceptual and machine learning

models. The stand-alone WELM and WRT models using only meteorological variables performed poorly for hourly runoff

forecasting. The CemaNeige GR4H model as stand-alone model yielded good performance; however, it overestimated low

flows. The hybrid CemaNeige GR4H-WELM and CemaNeige-WRT models provided better simulation results than the

stand-alone models, especially regarding the extreme flows. The results of the study demonstrated that using different

variables from the conceptual model, including the snow module, in the machine learning models as input data can

significantly affect the performance of rainfall-runoff modelling. The hybrid modelling approach can potentially improve

runoff simulation performance in karst catchments with diversified geological formations where the rainfall-runoff process

is more complex.

Keywords Conceptual model with snow module � Hourly data � Hybrid modelling � Karst � Ljubljanica River catchment �
Machine learning
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IHACRES: Identification of unit hydrograph and

component flows from rainfall, evapo-

transpiration, and streamflow

KGE: Kling-Gupta efficiency

KNN: K nearest neighbours regression

LR: Linear regression

LSTM: Long short-term memory model (LSTM)

MAE: Mean absolute error

Melt: Average actual snow melt in CemaNeige

GR4H model

MLP: Multilayer perceptron

MLR: Multiple linear regression

MRA: Multiresolution analysis

MODWT: Maximal over discrete wavelet

transformation

NSE: Nash–Sutcliffe efficiency

NWM: National water model

P: Precipitation

Perc: Percolation

Pliq: Average liquid precipitation in Cema-

Neige GR4H model

Pn-Ps: The difference between net rainfall and

the part of Pn filling the production store

in CemaNeige GR4H model

Psol: Average solid precipitation in CemaNeige

GR4H model

Q: Discharge

QD: Direct flow in CemaNeige GR4H model

QR: Routing store outflow in CemaNeige

GR4H model

RBFNN: Radial basis function neural network

RF: Random forests

SP: Average snow pack (snow water equiva-

lent) in CemaNeige GR4H model

SMI: Soil moisture index in CemaNeige GR4H

model

SOV: Second-order Volterra series model

SVM: Support vector machine

T: Temperature

WELM: Wavelet-based extreme learning machine

WGANN: Wavelet-based genetic algorithm–artificial

neural network

W-M5

model:

Wavelet-based M5 model

WRT: Wavelet-based regression tree

x1: Production store capacity in CemaNeige

GR4H model

x2: Groundwater exchange coefficient in

CemaNeige GR4H model

x3: Routing store capacity in CemaNeige

GR4H model

x4: Unit hydrograph time constant

XGB: Extreme gradient boosting

1 Introduction

The accurate forecasting of hydrological variables is cru-

cial for water resources management and planning.

Hydrological modelling can be critical not only to reveal

the complex hydrological process but also taking measures

against extreme hydrological events such as floods and

droughts. Furthermore, hydrological modelling using high

temporal resolution data e.g., on an hourly basis, has

become increasingly important due to the sudden changes

in hydrometeorological variables. In this regard, various

hydrological modelling approaches such as conceptual,

physically based, and data-driven models are widely

implemented for rainfall-runoff modelling. The physically

based models may require many hydrometeorological and

catchment related variables, which represent the physical

characteristics of the catchment (Abdulkareem et al. 2018).

Conceptual models utilize simplified descriptions that

incorporate the variables into hydrological processes. The

data-driven models are based on the evaluation of the

relationship between input and output data without con-

sidering the physical process in the catchment (Solomatine

and Wagener 2011).

Conceptual models may have advantages for hydrolog-

ical modelling because they require less data compared to

the physically based models and considering the relation-

ships between variables based on the hydrological process

compared to the data-driven models. In this regard, con-

ceptual models have been widely implemented for rainfall-

runoff modelling in different catchments (Osuch et al.

2019; Al-Safi and Sarukkalige 2020; Mathevet et al. 2020;

Lees et al. 2021). The Génie Rural (GR) lumped hydro-

logical conceptual models, which have different versions

for different time scales, such as Génie Rural à 4 para-

mètres Horaires (GR4H), and Génie Rural à 4 paramètres

Journalier (GR4J), have become increasingly popular in the

last two decades (Perrin et al. 2003; van Esse et al. 2013;

Poncelet et al. 2017; Cantoni et al. 2022). The usefulness of

the GR models has been demonstrated in various catch-

ments (Lavtar et al. 2020; Darbandsari and Coulibaly 2020;

Kumari et al. 2021). Lavtar et al. (2020) investigated the

performance of the GR4J and Génie Rural à 6 paramètres

Journalier (GR6J) in the sub-catchments of the Sava River
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in Slovenia. They found that the GR6J performed better

than GR4J, especially in larger sub-catchments. van Esse

et al. (2013) implemented the SUPERFLEX and GR4H

models for rainfall-runoff modelling in French catchments.

They revealed that the performance of the conceptual

models can be affected by catchment size, wetness,

flashiness of flows and climatic characteristics. They stated

that conceptual models performed better in larger and

wetter catchments than in smaller and drier catchments.

Valéry et al. (2014a, b) stated that using the snow

accounting routine for snow-affected catchments could

improve the modelling performance and they introduced

the snow accounting routine named CemaNeige. Using the

CemaNeige with GR models in the snow affected catch-

ments can improve the performance of rainfall-runoff

modelling as indicated by Sezen et al. (2018) and Hao et al.

(2022). Accordingly, it can be pointed out that different

factors such as catchment and climate characteristics as

well as model structure can influence the modelling per-

formance of the conceptual models.

Data-driven models are based on the relationship

between the input and output variables without considering

the physical process in the catchment. In this regard, data-

driven models differ from conceptual and physically based

models and are now widely used in hydrological mod-

elling. The forecasting of hydrological variables such as

precipitation, evapotranspiration, and runoff using data-

driven models has increased in recent years (Unnikrishnan

and Jothiprakash 2018; Hu et al. 2021; Sawaf et al. 2021;

Wang et al. 2021; Chakraborty and Biswas 2023). These

studies have demonstrated the reliability and applicability

of the data-driven models for the estimation of the hydro-

logical variables. To overcome the drawbacks of the data-

driven models, such as the highly non-stationary data

characteristics, techniques such as the wavelet transform

have been used along with data-driven models for hydro-

logical modelling (Nourani et al. 2014). Tayyab et al.

(2019) analysed the performance of the integrated artificial

neural network (ANN) with discrete wavelet transforma-

tion (DWT) for modelling rainfall-runoff in the Jinsha

River catchment, China. They stated that DWT helped to

improve the modelling performance and radial basis

function neural network (RBFNN) with DWT yielded more

satisfactory results. Roushangar et al. (2018) used the

geomorphology based integrated extreme learning machine

(G-ELM), an integrated ELM (I-ELM), and wavelet based

extreme learning machine (WELM), and wavelet-based

ANN (WANN) for modelling rainfall-runoff in the Ajichay

catchment, Iran. They found that the WELM and I-ELM

models performed better than the G-ELM model in pre-

dicting the peak values. They also pointed out that WELM

gave more reliable results than WANN in dealing with the

nonlinear characteristics of the rainfall-runoff process.

Nourani et al. (2019) compared the performance of the

wavelet-based M5 model tree (W-M5 model) with WANN

and the stand-alone M5 model tree for modelling rainfall-

runoff in the Sardrud catchment in Iran. They found that

the wavelet transform improved the modelling perfor-

mance compared to the standalone M5 model tree and that

the W-M5 model tree performed reliably for runoff simu-

lation. It is clear that various data-driven modelling

approaches continue to be used for rainfall-runoff

modelling.

The hybrid modelling approaches, which integrate the

conceptual and data-driven models have been used to

overcome the drawbacks of both modelling approaches and

improve the performance of rainfall-runoff modelling. The

usefulness of the hybrid modelling approach for rainfall-

runoff modelling has been shown in several studies (e.g.,

Sikorska-Senoner and Quilty 2021; Fattahi et al. 2022;

Sezen and Partal 2022a). Sikorska-Senoner and Quilty

(2021) implemented the Hydrologiska Byråns Vattenbal-

ansavdelning (HBV) conceptual model, k nearest neigh-

bours regression (KNN), multiple linear regression (MLR),

second-order Volterra series model (SOV), ANN, random

forests (RF), and extreme gradient boosting (XGB) data-

driven models to analyse the performance of the hybrid

model approach for modelling daily rainfall-runoff in the

Dünnern, Kleine Emme, and Muota catchments in

Switzerland. They indicated that the hybrid model

approach yielded promising results in forecasting runoff

and RF and XGB outperformed other data-driven models.

Fattahi et al. (2022) integrated the identification of unit

hydrograph and component flows from rainfall, evapo-

transpiration, and streamflow (IHACRES) model with

group method of data (GMDH) for monthly runoff esti-

mation in the Talesh-Anzali catchment, Iran. They pointed

out that the integrated IHACRES-GMDH model approach

improved the modelling performance compared to the

IHACRES model. Sezen and Partal (2022b) combined the

GR4J model with the wavelet-based genetic algorithm–

artificial neural network (WGANN) for daily rainfall-run-

off modelling in the Eastern Black Sea and Kızılırmak

catchments in Turkey. They used different GR4J model

outputs, such as soil moisture, routing store outflow, and

direct runoff in the WGANN model as input data. They

found that the hybrid modelling approaches performed

better than the stand-alone GR4J model. They also stated

that using the routing store outflow and direct runoff as

input data provided more reliable results than using soil

moisture as input data in the hybrid models. As can be

seen, the hybrid model approach can not only have the

advantage of using the conceptual model variables

obtained by considering the hydrological process but also

benefit from the data-driven models handling the complex

relationship between input and output data.
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The rainfall-runoff relationship and runoff could be

more complex, particularly in karst catchments (Hartmann

et al. 2014). In this regard, conceptual, physically based,

and machine learning models have been implemented in

karst catchments to improve rainfall-runoff modelling

performance (Zhou et al. 2019; Sezen et al. 2019; Husic

et al. 2022). Zhou et al. (2019) integrated the Xinanjiang

conceptual model and a two reservoir-based karst model

for predicting runoff in the karst and non-karst areas in the

Lijiang River basin in China. They stated that Xinanjiang

model integrated with karst model outperformed the con-

ventional Xinanjiang model for simulating rainfall-runoff

process. Sezen et al. (2019) compared the performance of

the GR4J, ANN, deep neural network and regression tree

models in the nonhomogeneous Ljubljanica River catch-

ment and its sub-catchments in Slovenia. They found that

the ANN and deep neural network models yielded better

performance than GR4J for modelling the hydrograph

recession in the karst sub-catchments. Husic et al. (2022)

compared the performance of the physically based Soil&-

Water Assessment tool, conceptual LUMP, and long short-

term memory (LSTM) models in a fluvial stream and karst

spring in Kentucky, USA. They stated that the LSTM

model outperformed the physically based and conceptual

models for the estimation of quick, intermediate, and slow

flow contributions. However, they also pointed out that the

process-based models yielded more exact time-fractal

scaling of hydrological flow pathways than LSTM.

Mayaud et al. (2023) investigated the water levels and flow

pattern in Planinsko Polje (part of the Ljubljanica River

catchment) in Slovenia installing a monitoring system and

implementing water balance analysis results in a concep-

tual model. They revealed that combining the water levels

and flow measurements with a digital elevation model

(DEM) can be useful for the evaluation of water balance

and monitoring of floods in complex karst areas such as

poljes. In most research, the conceptual, physically based

and machine learning models were compared, or the

enhanced versions of them were used to improve rainfall-

runoff modelling in karst catchments. The hybrid mod-

elling approach, including different model types, was

rarely implemented, or not elaborately handled for the

potential modelling improvement perspective in karst

catchments. However, using the hybrid modelling approach

can have the potential to overcome the drawbacks of the

stand-alone conceptual, physically based and machine

learning models in karst catchments where the rainfall-

runoff process can be more complicated.

The main aim of this study is to integrate the GR4H

model including the snow module (i.e., CemaNeige GR4H)

with the wavelet-based machine learning models, namely

WELM and WRT for hourly rainfall-runoff modelling in a

mostly karst catchment. In this respect, the objectives of

the study can be stated as follows:

• Analysing the hybrid modelling performance for hourly

rainfall-runoff modelling in a broad perspective via

implementing distinctive data variables obtained from

the conceptual model.

• Using the snow module variables of the conceptual

model in a mostly karst and snow-affected catchment as

input data in the machine learning models and observ-

ing the change in hybrid modelling performance.

• Analysing and comparing the performance of hybrid

models and stand-alone conceptual and machine learn-

ing models in a mostly karst catchment.

• Determining the sensitivity of input variables in hybrid

models.

In this regard, various outputs of the CemaNeige GR4H

in the WELM and WRT models were used as input data.

The performance of the hybrid models was compared with

the stand-alone WELM, WRT, and CemaNeige GR4H

models in the mostly karst Ljubljanica River catchment in

Slovenia. The artificial bee colony (ABC) optimization

algorithm was used to determine parameters in the con-

ceptual, data-driven, and hybrid models. Using different

variables of the snow module, such as liquid and solid

forms of precipitation, snowpack, and snowmelt, in addi-

tion to the outputs of the conceptual model, such as routing

store outflow, direct runoff, actual evapotranspiration, and

soil moisture in the machine learning models, represents

the novelty of this study. In other words, the effects of

different input variables, including snow-related data

obtained from the conceptual model on hybrid modelling

performance, were investigated comprehensively in a

mostly karst and snow-affected catchment. Furthermore,

implementing a hybrid modelling approach at an hourly

scale and analysing the simulation performance of the

conceptual, machine learning, and hybrid models at the

extreme flows (i.e., low and high flows) also contributes to

the novelty of the study. Testing the hybrid modelling

performance using various wavelet-based data-driven

models (i.e., WELM and WRT) is important to observe

performance changes of the hybrid model. In addition,

implementing the sensitivity analysis of the input variables

in the hybrid models is one of the significant aspects of the

study to investigate their effects on the rainfall-runoff

modelling. In this way, the hybrid modelling approach in a

mostly karst catchment for hourly rainfall-runoff modelling

was analysed in a broad aspect.
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2 Data and methods

In this section, firstly, the study area and used data char-

acteristics were given in Sect. 2.1. The conceptual, stand-

alone machine learning models and hybrid model struc-

tures were introduced in Sect. 2.2. Finally, the criteria for

evaluating the models’ performance were presented in

Sect. 2.3.

2.1 Study area and data used

The hourly rainfall-runoff modelling was carried out in the

Ljubljanica River catchment in Slovenia, which has non-

homogeneous characteristics. The elevation map and

location of the study area were shown in Fig. 1. The

Ljubljanica River catchment has different features mostly

based on the geological and karst area variety across the

catchment (Sezen et al. 2019). The Ljubljanica River

catchment has approximately 1890 km2 area and the alti-

tude of the catchment ranges from 300 to 1800 m a.s.l.

(Fig. 1) (Sapač et al. 2020). The Ljubljanica River presents

a significant area of the Sava River tributaries (Cotman

et al. 2008). The river catchment mostly includes porous

carbonate rocks and partly noncarbonate rocks, surface

flows have mostly short duration, and rivers and streams

submerge underground on several occasions across the

flow path (Rusjan et al. 2019). The river catchment has

transitional climate characteristics between sub-Mediter-

ranean and continental climates with annual mean rainfall

between 1400 and 2000 mm (Rusjan et al. 2019).

In this study, the period from 01 January 2016 00:00 to

31 December 2020 23:00 was used for hourly rainfall-

runoff modelling. The first two months of the data period

were used for warm-up process in the conceptual model.

The rest of data was divided into two equal parts for the

calibration (i.e., period between 01 March 2016 00:00 and

01 August 2018 11:00) and validation (i.e., period between

01 August 2018 12:00 and 31 December 2020 23:00)

periods in conceptual, machine learning, and hybrid mod-

els. The data periods for the calibration and validation were

determined according to the study carried out by Klemeš

(1986). This research suggests the data partition as 50% for

both calibration and validation periods if the data is long

enough. The hourly precipitation (P) and temperature

(T) data of the five meteorological stations, namely Topol

pri Medvodah, Logatec, Postojna, Ljubljana, and Nova vas

na Blokah were used in rainfall-runoff modelling (Fig. 1).

The Thiessen polygons were applied to calculate the areal

precipitation and temperature (Fig. 1). The hourly evapo-

transpiration (E) was calculated using the Oudin formula

(Oudin et al. 2005). The usefulness of the Oudin formula

for rainfall-runoff modelling was shown in the previous

studies (e.g., Kodja et al. 2020; Flores et al. 2021). The

hourly discharge data (Q) of the gauging station Moste

(Fig. 1) was used for modelling. The mean, standard

deviation, minimum, maximum, skewness, and kurtosis

statistics related to the hydrometeorological variables are

given in Table 1. As can be seen in Table 1, average hourly

precipitation, evapotranspiration, temperature, and runoff

are about 0.2 mm/h, 0.1 mm/h, 10 �C, and 0.1 mm/h,

respectively. In addition, the Pearson correlation coeffi-

cients between the precipitation, evapotranspiration, tem-

perature, and runoff were given in Table 2. The Pearson

correlation coefficients between the precipitation and run-

off increase from 0.11 to 0.20 when the time lag increases

from 0 to 10 h. In addition, the correlation coefficients

between evapotranspiration and runoff are about - 0.20,

and the correlation coefficients between temperature and

runoff are about - 0.33 as seen in Table 2.

2.2 Models

2.2.1 GR4H and CemaiNeige GR4H conceptual models

The GR4H model is an hourly lumped conceptual model

used for rainfall-runoff modelling (Mathevet 2005; Moine

2008). The GR4H model has four free parameters, namely,

production store capacity (x1[mm]), groundwater exchange

coefficient (x2[mm/h]), routing store capacity (x3[mm]),

and unit hydrograph time constant (x4[h]). The precipita-

tion and evapotranspiration are used as input data into the

GR4H model. In this study, the CemaNeige snow module

(Valéry et al. 2014a, b) was used together with the GR4H

model for rainfall-runoff modelling. In the CemaNeige

model, daily liquid equivalent water depth of total pre-

cipitations and daily air temperature are used as input data.

The CemaNeige model has two free parameters, namely

the cold content factor and the snowmelt factor (Valéry

et al. 2014a). In this regard, the CemaNeige GR4H model

has a total of six parameters that need to be calibrated. The

ABC was used to calibrate the parameters of the Cema-

Neige GR4H model. The CemaNeige GR4H variables

shown in Table 3, representing both GR4H and CemaNeige

variables, were used as input data into the hybrid models.

Further information on the implementation of the Cema-

Neige GR4H model can be found in Mathevet (2005),

Moine (2008), Valéry et al. (2014a, b), Coron et al. (2017),

and Coron et al. (2022).

2.2.2 Wavelet transformation

Wavelet transformation is a pre-processing technique that

can help to reveal the characteristics of a time series, such

as discontinuities and trends (Rezaie-Balf et al. 2021).

Wavelet transformation can be useful to deal with the non-
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stationary features of the time series and show the temporal

representation of the signal (Nourani et al. 2014). In this

regard, the use of the wavelet transformation with the

machine learning models has increased in hydrological

modelling studies (Seo and Kim 2016; Sun et al. 2019;

Graf et al. 2019; Bajirao et al. 2021). There are different

types of wavelet transformation, such as continuous

wavelet transformation (CWT) and DWT. The DWT can

provide sufficient information related to the time series and

help to reduce the computational time compared to CWT

(Wu and Kuo 2009). In this regard, the wavelet coefficients

for specific scales are obtained in DWT. The DWT

Fig. 1 The main characteristics and location of the study area. Red circles show considered meteorological stations and blue circle stands for the

discharge gauging station
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coefficients are obtained based on terms, such as decom-

position level, time translation factor, fixed dilation step,

and position parameter (Daubechies 1990). Thus, detail

and approximation components of the time series are

acquired using DWT. In other words, high- and low-fre-

quency components of the time series are determined. In

this study, maximal over discrete wavelet transformation

(MODWT), which has the advantage of having no dyadic

sample size limitation (Jiang et al. 2021), was used for the

multiresolution analysis (MRA) and the mother wavelet of

Daubechies-4 (db4) was implemented. The MRA analysis

is based on the pyramid algorithm for time-series decom-

position (Mallat 1989) and can help capturing the changes

within different frequency intervals in the hydrological

time series, such as streamflow data (Maslova et al. 2016).

The db4 was used as mother wavelet, which can be influ-

ential in generating time localization features for short

memory time series (Nourani et al. 2014). In this study, the

wavelet decomposition of level was selected as 14

according to the formula of int(log2(N)-1) (Sang 2012),

where N refers to the length of data.

The Boruta algorithm, which is a random forest-based

feature selection technique, was implemented to determine

significant wavelet components (Kursa et al. 2010; Kursa and

Rudnicki 2010). The high performance of the Boruta algo-

rithm for feature selection has been demonstrated in the pre-

vious studies (Prasad et al. 2019; Speiser et al. 2019). In this

regard, important wavelet components of the input data

detected by the Boruta algorithm were used in the stand-alone

machine learning and hybrid models for runoff forecasting.

Table 1 Basic statistics related

to hourly precipitation,

evapotranspiration, temperature,

and discharge data in the

selected period 2016–2020

Variables Statistical data

Minimum Mean SD Maximum Skewness Kurtosis

P (mm/h) 0 0.21 0.86 25.81 7.9 94.7

E (mm/h) 0 0.08 0.13 0.62 1.74 2.12

T (�C) - 19.6 9.9 8.5 35.3 0.03 - 0.51

Q (mm/h) 0.01 0.11 0.11 0.55 1.54 1.57

Table 2 Pearson correlation coefficients of cross-correlations between hydrometeorological variables (precipitation (P), evapotranspiration (E),

and temperature (T)) and discharge data (Q) for different time lags (n = 0–10 h)

n Pearson correlation coefficients

0 1 2 3 4 5 6 7 8 9 10

Pt–n-Q 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.20

Et-n-Q - 0.20 - 0.20 - 0.20 - 0.20 - 0.20 - 0.20 - 0.20 - 0.20 - 0.20 - 0.19 - 0.19

Tt-n-Q - 0.34 - 0.34 - 0.34 - 0.33 - 0.33 - 0.33 - 0.33 - 0.33 - 0.33 - 0.33 - 0.32

Table 3 Variables obtained from the CemaNeige GR4H and used in the hybrid models as input data

Symbols Variables

QR [mm/h] Routing store outflow

QD [mm/h] Direct flow

AE [mm/h] Actual evapotranspiration

SMI Soil moisture index

Perc [mm/h] Percolation

Pn-Ps [mm/h] The difference between net rainfall and the part of Pn filling the production store

AExch1 & AExch2 [mm/h] Actual exchange between catchments

Pliq [mm/h] Average liquid precipitation

Psol [mm/h] Average solid precipitation

SP [mm] Average snow pack (snow water equivalent)

Melt [mm/h] Average actual snow melt
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For this process, the maximum Z scores among shadow

variables (MZSA) are determined and the attributes having

lower and higher than MZSA were classified as unimportant

and important, respectively (Kursa and Rudnicki 2010).

2.2.3 Artificial bee colony

The use of meta-heuristic algorithms such as swarm

intelligence and evolutionary algorithms to solve opti-

mization problems in water resources engineering has

increased in the last decades (Reddy and Kumar 2020).

Artificial bee colony, introduced by Karaboga (2005), is a

swarm intelligence-based meta-heuristic algorithm that

relies on the foraging behaviour of the honeybees. The

forage selection, that triggers the collective intelligence of

bee swarms, depends on three main components, namely

food sources, employed foragers, and unemployed for-

agers. The exchange of information among bees is signif-

icant for the collective intelligence related to the quality of

food resources, and the communication among bees occurs

during the waggle dance in a dancing area (Karaboga

2005). In the ABC model, the artificial bee colony consists

of three groups of bees, namely the employed bees, the

onlookers, and the scouts. Accordingly, the ABC model

consists of a process including determination of food

sources and nectar amounts by employed bees, the pref-

erence and determination of food sources and nectar

amounts by onlooker bees, the exploitation of the sources

by the bees, the scouting of the search area and discovering

new food sources and memorising the best food source

found (Karaboga 2005). The ABC algorithm has been

widely implemented for the calibration process in hydro-

logical modelling studies (e.g., Huo et al. 2018; Farfán and

Cea 2021). In this study, the ABC algorithm was used to

calibrate the parameters in the conceptual, machine learn-

ing, and hybrid models. Detailed information about the

ABC algorithm can be found in Karaboga (2005).

2.2.4 Extreme learning machine

Extreme learning machine can be considered as a training

algorithm for the single hidden layer feedforward neural

networks, which offers advantages such as fast conver-

gence and satisfactory performance in classification, clus-

tering, and regression problems (Wang et al. 2021). The

training of ELM depends on random initialization and

linear parameter solution. Initially, ELM uses random

parameters for the weights (w), and the bias (b) in the

hidden layer, which are frozen during the training stage.

The input vector is mapped into a random feature space

with random characteristics and nonlinear activation

functions such as tangent sigmoid, sigmoid, and radial-

basis functions. Second, the output weight (b) is

determined by the Moore–Penrose inverse as a linear

problem Hb ¼ T , where H stands for the hidden layer

output matrix and T for the training data target matrix

(Huang et al. 2006; Wang et al. 2021). The usefulness of

ELM, such as fast forecasting process and handling the

complex problems for hydrological time series has been

shown in many studies (e.g., Atiquzzaman and Kandasamy

2016; Zhu et al. 2019; Feng et al. 2022). In this study, the

wavelet transformed input data were used in stand-alone

ELM and hybrid models. In addition, the number of hidden

neurons was determined using the ABC algorithm in stand-

alone WELM and hybrid models including the WELM

model. A detailed description and steps of the ELM model

can be found in (Huang et al. 2006; Wang et al. 2021).

2.2.5 Decision trees

Decision trees can be used for classification or regression

problems. Decision trees refer to the compact tree-like

figurations of conditions, which determine when a decision

should be implemented along with the action or decision

(Dobra 2016). Decision trees include two basic node types,

namely leaf node and non-leaf node (including root node).

Each path from the root node to the leaf node can be

regarded as a decision rule which includes a condition and

a conclusion part (Berrar and Dubitzky 2013). Decision

trees have two main processes, namely the growth and

pruning phases. The growth phase refers to a recursive

partitioning of the training dataset, where either each leaf

node can be assigned to a class or a further portioning of

the associated leaf node to its child nodes. The pruning

phase targets the prevention of overfitting of the training

dataset (Kotsiantis 2013). Decision trees have the advan-

tage that the set of decision rules in the model structure is

easy to understand, and the computational cost of the

learning process is low to moderate (Berrar and Dubitzky

2013). In this regard, decision trees are widely used for the

hydrological variables’ estimation (e.g., Gharaei-Manesh

et al. 2016; Nourani et al. 2019). In this study, regression

trees were used to model hourly rainfall-runoff. Wavelet

transformed input data were used in stand-alone RT and

hybrid models including RT. Furthermore, the maximum

depth of the tree was determined using the ABC algorithm

in stand-alone WRT and hybrid models including WRT.

2.2.6 Hybrid models

Three different hybrid models were implemented for

hourly rainfall-runoff modelling in this study. Accordingly,

various outputs of the CemaNeige GR4H were used in

three hybrid model structures. In this regard, the outputs of

the conceptual model used in the hybrid model structures

were presented in Table 4. The antecedent days of the

944 Stochastic Environmental Research and Risk Assessment (2024) 38:937–961

123



variables (t-1, t-2, t-3) were used as input data for

rainfall-runoff modelling in stand-alone machine learning

and hybrid models. Initially, the input variables were

decomposed into components using the wavelet transform.

Then, the Boruta algorithm was used to determine the

important wavelet components, and these components were

used in the ELM and RT models for runoff prediction. The

hybrid model structures were shown in Fig. 2.

2.3 Model evaluation criteria

The performance of the conceptual, machine learning, and

hybrid models was evaluated based on Nash–Sutcliffe

efficiency (NSE) (Nash and Sutcliffe 1970), Kling-Gupta

efficiency (KGE) (Gupta et al. 2009), index of agreement

(d) (Willmott 1981), and mean absolute error (MAE) cri-

teria. The formula, value ranges, and optimal values for

each performance evaluation criterion are given in Table 5.

From Table 5, it can be seen that optimal performance

occurs when the NSE, KGE, and d values approach 1. If the

value of MAE value approaches 0, it means optimal per-

formance of the models. In addition, when comparing the

model performance, NSE values of 0.8 to 1, 0.7 to 0.8, 0.5

to 0.7, and less than 0.5 were considered as very good,

good, satisfactory, and unsatisfactory performance,

respectively, based on the study by Moriasi et al. (2015).

N stands for the data length, Qobs for observed values,

Qsim for simulated values, Qobs for the mean of observed

values in Table 5. Additionally, r stands for the correlation

coefficients between the simulated and observed values, b
for the rio of the standard deviation of simulated values to

the standard deviation of observed values, a for the ratio of

mean of simulated values to the mean of observed values in

the KGE formula.

Sensitivity analysis was performed to observe the effects

of the input variables on rainfall-runoff modelling in the

Table 4 Used variables of the

CemaNeige GR4H in hybrid

models

Hybrid models Used variables in hybrid models

CemaNeige GR4H-WELM1, (AE, QR, QD)t-1,t

CemaNeige GR4H-WRT1 (AE, QR, QD)t-2,t-1,t

(AE, QR, QD)t-3,t-2,t-1,t

CemaNeige GR4H-WELM2, (SMI, Perc, Pn-Ps, AExch1, AExch2)t-1,t

CemaNeige GR4H-WRT2 (SMI, Perc, Pn-Ps, AExch1, AExch2)t-2,t-1,t

(SMI, Perc, Pn-Ps, AExch1, AExch2)t-3,t-2,t-1,t

CemaNeige GR4H-WELM3, (Pliq, Psol, SP, Melt, AE, AExch1, AExch2)t-1,t

CemaNeige GR4H-WRT3 (Pliq, Psol, SP, Melt, AE, AExch1, AExch2)t-2,t-1,t

(Pliq, Psol, SP, Melt, AE, AExch1, AExch2)t-3,t-2,t-1,t

Fig. 2 The description of the hybrid models used in the study
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hybrid models. In this regard, Bayesian Monte Carlo sen-

sitivity analysis was used, based on a Latin hypercube

sampling scheme for the prediction of the ‘‘Sobol’’ sensi-

tivity indices described by Saltelli (2002). Accordingly, the

calculation of the sensitivity indices is as follows:

First order for input i,

S ið Þ ¼ Var E f xij½ �ð Þ=Var fð Þ ð1Þ

where xi stands for the i-th input and S(i) for the first

sensitivity indice. Furthermore, total effect for input i is

computed as follows:

T ið Þ ¼ Var E f x�ij½ �ð Þ=Var fð Þ ð2Þ

where x-i denotes all inputs except for the i-th input and

T(i) is the total effect sensitivity indice (Saltelli 2002;

Gramacy 2007; Gramacy and Taddy 2010). The first-order

indices quantify the portion of variability based on the

variation in the main effects for each input variable,

whereas total effect indices quantify the portion of vari-

ability based on the total variation in each input variable

(Gramacy and Taddy 2022). For the implementation of

Bayesian Monte Carlo sensitivity analysis, one can refer to

Saltelli (2002) and Gramacy and Taddy (2022).

3 Results

3.1 Performance of the conceptual and data-
driven models

Initially, hourly rainfall-runoff modelling was carried out

using the GR4H and CemaNeige GR4H conceptual mod-

els. Simulation results for the calibration and validation

periods were presented in Table 6. It was found that both

the GR4H and CemaNeige GR4H models performed well

in the Ljubljanica River catchment. van Esse et al. (2013)

investigated the performance of twelve different concep-

tual model structures from the SUPERFLEX framework

and the GR4H model in 237 French catchments. They

revealed that conceptual hydrological models performed

better in larger and wetter catchments than in smaller and

drier catchments. They also stated that factors such as the

flashiness of flows, and large variations in hydroclimatic

conditions in the calibration and validation periods could

negatively affect model performance. Newman et al.

(2015) analysed the performance of the coupled Snow17

snow model and the Sacramento Soil Moisture Accounting

Model in different sized catchments with various hydro-

climatic characteristics across the contiguous United

States. They found that model performance can vary by

region and that factors such as aridity, precipitation inter-

mittency, snowmelt, and runoff seasonality could affect the

model performance. Accordingly, they pointed out that

model performance could decrease in dry regions where

snow is limited, while it could increase in catchments

where snow water equivalent increases. The CemaNeige

GR4H model yielded better simulation results than GR4H

in both the calibration and validation periods, as shown in

Table 6. The outperformance of the CemaNeige GR4H

model compared to GR4H is more evident for the cali-

bration period. This finding indicates that using the con-

ceptual GR4H model with the CemaNeige snow module

may be more reasonable than using a stand-alone GR4H

model in the Ljubljanica River catchment, which has

highly elevated and snow-covered areas. The relationship

between the simulated and observed streamflow for

CemaNeige GR4H is shown in Fig. 3. Although the

CemaNeige GR4H model performed well for rainfall-run-

off modelling, it overestimated low flows and slightly

underestimated high flows, as shown in Fig. 3. The scatter

diagram, non-exceedance probability, and 30-days rolling

mean plots clearly indicate overestimated low flows and

underestimated high flows, as shown in Fig. 3. Low flows

were overestimated, especially in the driest period of the

year (i.e., June–September) in the Ljubljanica River

catchment. The nonhomogeneous characteristics of the

catchment and discontinuities in surface flow across the

flow path could hinder better forecasting performance of

Table 5 Model evaluation

criteria used in the study
Evaluation criterion Formula Range Optimal value

NSE
NSE ¼

PN

i¼1
Qobs;i�Qsim;ið Þ2

PN

i¼1
Qobs;i�Qobs;ið Þ2

[- !, 1] 1

KGE
KGE ¼ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r � 1ð Þ2þ b� 1ð Þ2þ a� 1ð Þ2
q

.
[- !, 1] 1

d
d ¼ 1 �

PN

i¼1
Qsim;i�Qobs;ið Þ2

PN

i¼1
Qsim;i�Qobsj jþ Qobs;i�Qobsj jð Þ2

[0, 1] 1

MAE
MAE ¼ 1

N

PN

i¼1

Qsim;i � Qobs;i

�
�

�
� [0, !] 0
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the conceptual model. Sapač et al. (2020) stated that

variations in hydrogeological conditions in nonhomoge-

neous catchments such as the Ljubljanica River catchment

could significantly affect the rainfall-runoff process and

surface runoff pattern.

The stand-alone WELM and WRT models performed

poorly in hourly rainfall-runoff modelling (Table 6). The

performance of WELM is very poor in both the calibra-

tion and validation periods. Using different lags of the

hydrometeorological variables did not noticeably improve

the performance of the WELM model. Although the

stand-alone WRT model performed better than the

WELM model, it also yielded poor performance, espe-

cially in the validation period. Similar to the WELM, the

Table 6 The performance of the conceptual, machine learning and hybrid models

Models Input data Model performance

Calibration Validation

NSE KGE d MAE

(mm/h)

NSE KGE d MAE

(mm/h)

GR4H (P, E)t 0.80 0.84 0.94 0.035 0.84 0.79 0.95 0.03

CemaNeige GR4H (P, E)t 0.86 0.89 0.96 0.029 0.84 0.81 0.95 0.028

WELM (P, E)t-1,t 0.08 - 0.02 0.32 0.08 0 - 0.08 0.38 0.08

(P, E)t-2,t-1,t 0.10 0.04 0.40 0.08 0.01 - 0.01 0.42 0.08

(P, E)t-3,t-2,t-1,t 0.13 0.09 0.44 0.08 0.01 - 0.02 0.42 0.08

WRT (P, E)t-1,t 0.29 0.35 0.67 0.07 0.10 0.28 0.61 0.07

(P, E)t-2,t-1,t 0.31 0.38 0.69 0.07 0.12 0.31 0.63 0.07

(P, E)t-3,t-2,t-1,t 0.31 0.38 0.68 0.07 0.12 0.30 0.62 0.07

CemaNeige GR4H-

WELM1

(AE, QR, QD)t-1,t 0.92 0.94 0.98 0.022 0.89 0.91 0.97 0.022

(AE, QR, QD)t-2,t-1,t 0.92 0.94 0.98 0.022 0.89 0.91 0.97 0.022

(AE, QR, QD)t-3,t-2,t-1,t 0.92 0.94 0.98 0.022 0.89 0.91 0.97 0.022

CemaNeige GR4H-

WRT1

(AE, QR, QD)t-1,t 0.91 0.93 0.98 0.023 0.86 0.91 0.96 0.023

(AE, QR, QD)t-2,t-1,t 0.91 0.94 0.98 0.023 0.86 0.91 0.96 0.023

(AE, QR, QD)t-3,t-2,t-1,t 0.91 0.93 0.98 0.023 0.86 0.91 0.96 0.023

CemaNeige GR4H-

WELM2

(SMI, Perc, Pn-Ps, AExch1, AExch2)t-1,t 0.90 0.93 0.97 0.023 0.86 0.91 0.96 0.024

(SMI, Perc, Pn-Ps, AExch1, AExch2)t-2,t-1,t 0.91 0.93 0.97 0.021 0.87 0.91 0.96 0.022

(SMI, Perc, Pn-Ps, AExch1,
AExch2)t-3,t-2,t-1,t

0.91 0.93 0.97 0.022 0.88 0.91 0.97 0.022

CemaNeige GR4H-

WRT2

(SMI, Perc, Pn-Ps, AExch1, AExch2)t-1,t 0.88 0.91 0.97 0.025 0.82 0.88 0.95 0.026

SMI, Perc, Pn-Ps, AExch1, AExch2)t-2,t-1,t 0.88 0.91 0.97 0.025 0.82 0.88 0.95 0.026

(SMI, Perc, Pn-Ps, AExch1,
AExch2)t-3,t-2,t-1,t

0.88 0.91 0.97 0.025 0.82 0.88 0.95 0.026

CemaNeige GR4H-

WELM3

(Pliq, Psol, SP, Melt, AE, AExch1,
AExch2)t-1,t

0.89 0.92 0.97 0.024 0.84 0.86 0.95 0.025

(Pliq, Psol, SP, Melt, AE, AExch1,
AExch2)t-2,t-1,t

0.89 0.92 0.97 0.024 0.85 0.85 0.96 0.024

(Pliq, Psol, SP, Melt, AE, AExch1,
AExch2)t-3,t-2,t-1,t

0.89 0.92 0.97 0.024 0.85 0.85 0.96 0.024

CemaNeige GR4H-

WRT3

(Pliq, Psol, SP, Melt, AE, AExch1,
AExch2)t-1,t

0.88 0.91 0.97 0.025 0.82 0.89 0.95 0.026

(Pliq, Psol, SP, Melt, AE, AExch1,
AExch2)t-2,t-1,t

0.88 0.91 0.97 0.025 0.82 0.89 0.95 0.026

(Pliq, Psol, SP, Melt, AE, AExch1,
AExch2)t-3,t-2,t-1,t

0.88 0.91 0.97 0.025 0.82 0.89 0.95 0.026
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use of different lags in the hydrometeorological input data

slightly improved the modelling performance. In other

words, using only precipitation and evapotranspiration

data in stand-alone machine learning models as input data

did not yield satisfactory runoff prediction results. There

are important factors, which can influence the machine

learning models’ performance, such as used input data,

data length, and pre-processing techniques for runoff

forecasting. Moosavi et al. (2022) investigated the role of

input data, model type, data length, and pre-processing

technique for runoff forecasting. They revealed that input

variables and data length are more important than pre-

processing technique and model type for runoff forecast-

ing. In other words, if important explanatory input vari-

ables are not used in the machine learning models, the

model type and pre-processing technique used could not

provide satisfactory simulation results. In this regard,

using only precipitation and evapotranspiration as input

data without considering the hydrological process in

stand-alone machine learning models did not provide

promising simulation results.

3.2 Performance of the hybrid model
approaches

Initially, hourly rainfall-runoff modelling was carried out

using first the hybrid model approach, which includes AE,

QR, and QD as input data. The wavelet components of AE,

QR, and QD were obtained, and importance of each

wavelet component was determined. The importance of the

wavelet components is presented in Fig. 4. Accordingly,

only the first components of AE were rejected, and it was

found that the wavelet components of AE were more

important than QR and QD. The CemaNeige GR4H-

WELM1 yielded very good performance based on the NSE

criterion, reaching 0.92 in the calibration period and 0.89 in

the validation period (Table 6). The other performance

criteria (i.e., KGE, d, and MAE) also indicated the out-

performance of the CemaNeige GR4H-WELM1 compared

to the stand-alone conceptual and data-driven models. The

relationship between simulated and observed runoff,

30-days rolling mean, non-exceedance probability, and

scatter diagrams for CemaNeige GR4H-WELM1 are shown

Fig. 3 Comparison between observed and simulated hourly runoff at the gauging station Moste on the Ljubljanica River obtained as CemaNeige

GR4H result
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in Fig. 5. Although low flows are underestimated, Cema-

Neige GR4H-WELM1 performed better than the Cema-

Neige GR4H model in simulating low flows, especially in

the dry period. Furthermore, the CemaNeige GR4H-

WELM1 model predicted high flows well, as can be seen in

Fig. 5. The CemaNeige GR4H-WRT1 model performed

well in hourly runoff forecasting for the calibration and

validation periods as shown in Table 6. Although Cema-

Neige GR4H-WRT1 performed better than stand-alone

conceptual and data-driven models, it was relatively weak

compared to CemaNeige GR4H-WELM1. The relationship

between the simulated and observed streamflow is indi-

cated for CemaNeige GR4H-WRT1 in Fig. 6. Although

data scatter is still present, the simulated and observed

values in CemaNeige GR4H-WRT1 are more seasonally

coherent than in CemaNeige GR4H according to the

30-days rolling mean plot (Fig. 6). In CemaNeige GR4H-

WELM1 and CemaNeige GR4H-WRT1, using lags (i.e.,

implementing lags to t-3) of the hydrometeorological input

variables did not produce more promising simulation

results (Table 6). It can be concluded that using short-term

lags such as 2 or 3 h for each input variable did not sig-

nificantly affect the runoff forecasting performance.

Second, the performance of the hybrid models contain-

ing SMI, Perc, Pn-Ps, AExch1, and AExch2 as input data

was investigated for hourly rainfall-runoff modelling. The

importance of the wavelet components belonging to SMI,

Perc, Pn-Ps, AExch1, and AExch2 is shown in Fig. 7.

According to Fig. 7, it can be seen that the wavelet com-

ponents of SMI, Perc, and AExch2 have greater significance

Fig. 4 Determination of

important wavelet components

of actual evapotranspiration

(AE), routing store flow (QR),
and direct flow QD) input

variables via the Boruta

algorithm for the CemaNeige

GR4H-WELM1 and CemaNeige

GR4H-WRT1 models. Blue,

red, and green box plots with

the circles having the same

colour show important,

unimportant, and shadow

attributes, respectively

Fig. 5 Comparison between observed and simulated hourly runoff at the gauging station Moste on the Ljubljanica River obtained as CemaNeige

GR4H-WELM1 result
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than other variables. In addition, most of the D1 compo-

nents of SMI, Perc, Pn-Ps, and AExch2 were rejected, and

these components were discarded from the input variables.

The CemaNeige GR4H-WELM2 yielded very good per-

formance for the calibration and validation periods

according to the NSE values (Table 6). Other performance

criteria also show the satisfactory performance and out-

performance of CemaNeige GR4H-WELM2 against the

stand-alone data-driven and conceptual models. However,

the CemaNeige GR4H-WELM2 model did not perform

better than CemaNeige GR4H-WELM1. The linkage

between the simulated and observed streamflow for

CemaNeige GR4H-WELM2 is given in Fig. 8. The

CemaNeige GR4H-WELM2 model overestimated high

flows, especially during the January-April, May–July, and

October-December periods, as shown in Fig. 8. The low

flows in the July–September period, which is a critical

period for the Ljubljanica River catchment, were well

predicted by CemaNeige GR4H-WELM2. The scatter and

non-exceedance probability plots indicate the overestima-

tion of high flows and underestimation of low flows by

CemaNeige GR4H-WELM2. The use of lags for each input

variable slightly improved the runoff forecasting perfor-

mance of CemaNeige GR4H-WELM2 in the calibration

and validation periods (Table 6). The CemaNeige GR4H-

WRT2 model performed very well for hourly runoff fore-

casting; however, it performed poorly compared to

CemaNeige GR4H-WELM2. In addition, Table 6 shows

that the CemaNeige GR4H-WRT2 model performed better

than the stand-alone machine learning and conceptual

models. In this regard, the superior performance of

CemaNeige GR4H-WRT2 over the stand-alone models was

Fig. 6 Comparison between observed and simulated hourly runoff at the gauging station Moste on the Ljubljanica River obtained as CemaNeige

GR4H-WRT1 result

Fig. 7 Determination of

important wavelet components

of soil moisture index (SMI),
percolation (Perc), and rainfall

component (Pn-Ps), and actual

exchange between catchments

(AExch1 and AExch2) input

variables via the Boruta

algorithm for the CemaNeige

GR4H-WELM2 and CemaNeige

GR4H-WRT2 models. Blue,

red, and green box plots with

the circles having the same

colour show important,

unimportant, and shadow

attributes, respectively
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observed, especially in the calibration period according to

NSE, KGE, d, and MAE. The relationship between the

simulated and observed streamflow for CemaNeige GR4H-

WRT2 is presented in Fig. 9. Although the CemaNeige

GR4H-WRT2 model has scatter, it fits the observed flow

pattern seasonally (Fig. 9). However, CemaNeige GR4H-

WRT2 slightly overestimated low flows, especially during

the July–September period. Using various lags of each

input variable did not improve the performance of the of

CemaNeige GR4H-WRT2 for hourly rainfall-runoff mod-

elling (Table 6). Furthermore, the CemaNeige GR4H-

WRT2 model did not provide more reliable results than

CemaNeige GR4H-WRT1 according to the performance

evaluation criteria.

In the third hybrid model approach, Pliq, Psol, SP, Melt,

AE, AExch1, and AExch2 were used as input data. The input

variables were decomposed using the wavelet analysis and

the importance of the wavelet components is shown in

Fig. 10. According to Fig. 10, Pliq, AE, AExch1, and

AExch2 variables have more importance than other vari-

ables. Especially, the D1 and D2 components of the Pliq,

AE, AExch1, and AExch2 variables were found to be

unimportant. Although CemaNeige GR4H-WELM3

underestimated low flows according to the scatter plot, it

yielded good runoff simulation results (Fig. 11). The per-

formance evaluation criteria also indicated very good

performance of CemaNeige GR4H-WELM3 (Table 6). In

this regard, the NSE values reached 0.89 and 0.85 in the

calibration and validation periods, respectively. The

Fig. 8 Comparison between observed and simulated hourly runoff at the gauging station Moste on the Ljubljanica River obtained as CemaNeige

GR4H-WELM2 result

Fig. 9 Comparison between observed and simulated hourly runoff at the gauging station Moste on the Ljubljanica River obtained as CemaNeige

GR4H-WRT2 result
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relationship between the simulated and observed stream-

flow for CemaNeige GR4H-WELM3 is shown in Fig. 11.

The CemaNeige GR4H-WELM3 model slightly overesti-

mated flows during the July–September period; however,

the simulated flows agreed with the observed flows on the

monthly scale (Fig. 11). Besides, the CemaNeige GR4H-

WELM3 model performed poorly compared to CemaNeige

GR4H-WELM1 and CemaNeige GR4H-WELM2 when the

values of NSE, KGE, d, and MAE were considered. The

CemaNeige GR4H-WRT3 model outperformed the stand-

alone conceptual and machine learning models (Table 6).

The CemaNeige GR4H-WRT3 model yielded poorer runoff

simulation results than CemaNeige GR4H-WRT1, whereas

it performed similarly to CemaNeige GR4H-WRT2. The

linkage between the simulated and observed streamflow for

CemaNeige GR4H-WRT3 is indicated in Fig. 12.

According to the scatter plot, the CemaNeige GR4H-WRT3

model underestimated low flows (Fig. 12). Moreover, the

CemaNeige GR4H-WRT3 simulated flows are compatible

with observed flow on the monthly scale. Similar to

CemaNeige GR4H-WELM3, CemaNeige GR4H-WRT3

slightly overestimated flows during the June–September

period. Using several lags for each input variable slightly

improved the modelling performance of the CemaNeige

GR4H-WELM3 model in the validation period, while it did

not improve the performance of the CemaNeige GR4H-

WRT3 model.

Fig. 10 Determination of important wavelet components of liquid

precipitation (Pliq), solid precipitation (Psol), snowpack (SP), actual

snow melt (Melt), actual evapotranspiration (AE), and actual

exchange between catchments (AExch1 and AExch2) input variables

via the Boruta algorithm for the CemaNeige GR4H-WELM3 and

CemaNeige GR4H-WRT3 models. Blue, red, and green box plots with

the circles having the same colour show important, unimportant, and

shadow attributes, respectively

Fig. 11 Comparison between observed and simulated hourly runoff at the gauging station Moste on the Ljubljanica River obtained as CemaNeige

GR4H-WELM3 result
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Using several variables from CemaNeige GR4H in dif-

ferent hybrid models indicated that implementing different

input variables could affect the performance of the hybrid

model for hourly rainfall-runoff modelling. Accordingly,

the most reliable performance in hourly runoff simulation

was obtained when actual evapotranspiration, routing store

outflow, and direct flow were used as input data in the

WELM and WRT models in the Ljubljanica River catch-

ment. The similar findings were also obtained by Sezen and

Partal (2022a, b). In this regard, Sezen and Partal (2022a)

stated that using the outflows of the routing stores and

direct flow obtained from the GR6J model performed better

in the WGANN model than the use of the soil moisture

index obtained via GR6J in the semi-arid Konya Closed

basin, which has different climatic characteristics in Tur-

key. Similarly, using the routing store outflow and direct

flow obtained from GR4J as input data to the WGANN

model also provided better daily runoff simulation results

than using the soil moisture index obtained from GR4J in

the humid parts of the Kızılırmak and Eastern Black Sea

basins in Turkey, as pointed out by Sezen and Partal

(2022b). Implementing SMI, Perc, Pn-Ps, AExch1, and

AExch2 as input data in the second hybrid model approach

improved the hourly runoff forecasting performance com-

pared to the conceptual and machine learning models.

Anctil et al. (2004) implemented the soil moisture index

obtained from GR4J as input data in the ANN model and

found that using the soil moisture index as input data in the

data-driven model enhanced the daily runoff forecasting

performance. Tayfur et al. (2014) used soil moisture and

rainfall as input data in a generalized regression neural

network (GRNN) for hourly runoff forecasting in two small

sub-catchments of the Tiber River catchment in Italy. They

found that using soil moisture together with rainfall as

input data in GRNN remarkably improves the performance

of hourly runoff forecasting performance. The performance

improvement of the machine learning model when using

soil moisture as input data has been found in similar studies

(Casper et al. 2007; Ba et al. 2018). Using Pliq, Psol, SP,

Melt, AE, AExch1, and AExch2 as input data in the third

hybrid model approach enhanced the runoff prediction

performance compared to conceptual and machine learning

models; however, the third hybrid model approach per-

formed poorly compared to other hybrid model approaches.

It could be stated that the implementation of input variables

obtained considering the hydrological process stages in the

conceptual model structure, such as routing store outflow,

direct flow, and soil moisture, yielded better simulation

results in the Ljubljanica River catchment than the hybrid

model approach using the liquid and solid form precipita-

tion, snowpack, and melt as input data.

3.3 Comparing the performance of models
and sensitivity analysis

To examine the performance of the models, initially, a

raincloud plot was created for each model by converting

the predicted hourly runoff to daily runoff and was pre-

sented in Fig. 13. The density and box plots for the sim-

ulated and observed flows showed that CemaNeige GR4H-

WRT1 and CemaNeige GR4H-WELM1 were in better

agreement with the observed values. The CemaNeige

GR4H model has higher outliers than the observed flows,

as shown in Fig. 13. The stand-alone WELM and WRT

models performed poorly compared to the other models.

Then, the level plots for daily runoff were prepared using

the estimated hourly runoff to compare the minimum,

maximum, and mean discharge values for each month and

Fig. 12 Comparison between observed and simulated hourly runoff at the gauging station Moste on the Ljubljanica River obtained as CemaNeige

GR4H-WRT3 result
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Fig. 13 Raincloud plots for

observed and simulated daily

runoff by conceptual, machine

learning, and hybrid models

Fig. 14 Level plots of (a) minimum, (b) maximum, and (c) mean daily discharges for individual months and for long-term period (i.e., validation

period)
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were given in Fig. 14. The poor performance of the stand-

alone machine learning models (i.e., WELM and WRT) is

evident in predicting the minimum, mean, and maximum

discharges as shown in Fig. 14. The conceptual model

CemaNeige GR4H and hybrid models such as CemaNeige

GR4H-WELM1 and CemaNeige GR4H-WELM3 per-

formed well in predicting the minimum discharge. The

CemaNeige GR4H-WRT1 yielded better simulation results

for maximum discharge than other models. In addition, the

CemaNeige GR4H model performed poorly in predicting

the maximum discharge compared to its performance in

predicting the minimum discharge forecasting (Fig. 14a,

b). In predicting mean discharge, the hybrid models per-

formed well, with the exception of CemaNeige GR4H-

WELM2 (Fig. 14c). The CemaNeige GR4H model also

performed well in predicting mean discharge, as shown in

Fig. 14c. To observe the effects of input variables in the

hybrid models for rainfall-runoff modelling, the Bayesian

Monte Carlo sensitivity analysis was implemented and the

findings were shown in Fig. 15. It was found that some

input variables of the CemaNeige GR4H model had a

greater impact on the rainfall-runoff modelling (Fig. 15).

In this regard, it can be seen that QRt-2, QRt-3, QDt,

QDt-1, and QDt-2 are the most efficient variables in the

first hybrid model approach for rainfall-runoff modelling

(Fig. 15a). In the second hybrid model approach, variables

such as Perct-1, Perct-2, (Pn-Ps)t-2, (AExch1)t, and

(AExch1)t-1 influence the modelling of rainfall-runoff

(Fig. 15b). Furthermore, SPt-1 and SPt-2 are the most

influential variables for the runoff forecasting of the third

hybrid model approach, as shown in Fig. 15c. Accordingly,

it can be stated that the sensitivity of input variables

changes for each hybrid model and affects the performance

of the rainfall-runoff modelling.

4 Discussion

Implementing various variables related to the CemaNeige

snow module and GR4H model structure as input data to

the WELM and WRT machine learning models yielded

more reliable results than the stand-alone conceptual and

machine learning models for hourly rainfall-runoff mod-

elling. Using actual evapotranspiration, routing store and

direct flow components as input data in the first hybrid

model approach yielded more accurate simulation results

according to the evaluation criteria. The input variables

such as soil moisture, percolation, actual exchange between

catchments, and rainfall component in the second hybrid

model approach also provided promising runoff forecasting

results. Although the use of input variables such as liquid

and solid precipitation, snowpack in the third hybrid model

approach improved the performance of rainfall-runoff

modelling compared to the stand-alone models, it per-

formed worse compared to the first and second hybrid

model approaches based on the assessment criteria. These

results indicated that implementing various outputs of

CemaNeige GR4H as input data in the machine learning

models helped improving the performance and provided

different simulation results for each hybrid model

approach. Similar conclusions regarding the implementa-

tion of the hybrid model approaches have been obtained in

the previous studies. Accordingly, Humphrey et al. (2016)

pointed out that using soil moisture as input data obtained

from the GR4J in the ANN model enhanced the rainfall-

runoff modelling performance. In addition, Kumanlioglu

and Fistikoglu (2019) and Okkan et al. (2021) used dif-

ferent variables obtained from the conceptual models and

revealed that the hybrid model approaches performed bet-

ter than the stand-alone conceptual and machine learning

models. In this study, the conceptual CemaNeige GR4H

model yielded good performance, whereas the stand-alone

WELM and WSVR models performed poorly in hourly

runoff prediction. Using only the lags of precipitation and

evapotranspiration as input data in the machine learning

models did not yield reliable simulation results, especially

for the WELM model. In addition, the WRT model out-

performed the WELM model in hourly runoff prediction.

Moreover, using WELM in the hybrid model resulted in

better performance than the hybrid models containing the

WRT model according to the evaluation criteria (Table 6).

This indicates that used input variables have an important

role on the performance of the machine learning models

and implementing the outputs of the conceptual models as

input data improved the prediction performance of the

machine learning models. In this study, it was found that

the implementation of WELM and WRT in the hybrid

models could be useful to improve the performance of

rainfall-runoff modelling, as also stated in previous studies

(Yaseen et al. 2016; Nourani et al. 2019). As for extreme

flows, it is obvious that hybrid models can be a good

alternative for simulating minimum and maximum flows

compared to stand-alone conceptual and machine learning

models. The CemaNeige GR4H model performed better in

simulating minimum flows than the maximum flows. The

WELM and WRT models performed poorly in simulating

extreme discharges compared to the other models. The

sensitivity analysis showed that using different outputs of

the conceptual model as input data in the machine learning

models could significantly affect the runoff forecasting

performance. In this regard, the effects and contributions of

various variables obtained from the conceptual models on

the rainfall-runoff modelling performance of different

hybrid models will be further investigated in future studies.

Furthermore, the implementation of different hybrid mod-

elling approaches, such as nested hybrid models proposed
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by Okkan et al. (2021), will be investigated in further

studies. As can be seen in this study, using different outputs

of the conceptual models, applying various machine

learning models, and different hybrid modelling approa-

ches can be a guide to improve the performance of rainfall-

runoff modelling.

Different factors, such as data availability, quality of

dataset, uncertainty in the model structures, and used

model types can affect the rainfall-runoff modelling per-

formance remarkably. Westerberg and McMillan (2015)

analysed the uncertainties in data and calculation methods

on the hydrological signatures for rainfall-runoff process in

the Brue catchment in UK and Mahurangi catchment in

New Zealand. They revealed that the uncertainties could be

large and highly variable between the hydrological signa-

tures. Poulin et al. (2011) investigated the impacts of the

model structure and parameter equifinality on the uncer-

tainty for hydrological modelling by using the HYDRO-

TEL physically based model and HSAMI conceptual

model in Ceizur River basin, Canada. They pointed out that

the uncertainty in hydrological model structure could be

more important than parameter uncertainty. Her et al.

(2019) examined the effects of the uncertainties related to

the multiple general circulation models (GCMs) and multi-

parameter ensembles on hydrological projections using the

ABCD monthly water balance model in the Ohio River

basin, USA. They detected that the impact of the multi-

GCM ensemble uncertainty was prominent on rapid

hydrological components such as direct runoff, whereas the

uncertainty of model parameters was more efficient on

slow components such as soil moisture and groundwater.

Accordingly, it can be stated that the uncertainty of data-

sets, model structures, and parameters can significantly

affect the rainfall-runoff modelling performance. In addi-

tion, using different machine learning model approaches

could influence the modelling performance, remarkably.

Han and Morrison (2022) implemented the LSTM deep

learning model with National Water Model (NWM) in

Russian River basin in California, USA. They revealed that

the LSTM model approach contributed to the error cor-

rection of NWM model and improved the modelling per-

formance of the NWM model. Rahimzad et al. (2021)

compared the performance of linear regression (LR),

multilayer perceptron (MLP), support vector machine

(SVM), and LSTM machine learning models for daily

streamflow forecasting in the Kentucky River, USA. They

stated the LSTM model yielded more reliable results than

other conventional machine learning models. In this regard,

using deep learning approaches can have a high potential to

enhance rainfall-runoff modelling performance. As the

limited part of this study, the uncertainty analysis, sensi-

tivity analysis for the model outputs and unconventional

machine learning models, such as deep learning approa-

ches, are aimed to be implemented in further studies.

5 Conclusions

Rainfall-runoff modelling for a short-term period, e.g., at

hourly and daily scales, is important for predicting extreme

events. This task can be challenging, especially in the karst

catchments, such as the mostly karst Ljubljanica River

catchment as well as changing climatic conditions. In this

study, three different hybrid models based on the use of

various outputs of the CemaNeige GR4H model as input

data in WELM and WRT were implemented for hourly

rainfall-runoff modelling in the Ljubljanica River catch-

ment. The performance of the hybrid models was compared

with the stand-alone CemaNeige GR4H, WELM and WRT

models. The findings of the present study can be sum-

marised as follows:

• Using the CemaNeige snow module with GR4H

improved the performance of the hourly rainfall-runoff

modelling compared to the stand-alone GR4H model.

However, the CemaNeige GR4H model overestimated

low flows, especially during the dry period.

• The stand-alone WRT model outperformed the WELM

model. However, both the WRT and WELM models

performed poorly in runoff prediction. Implementing

only meteorological variables as input data in the stand-

alone machine learning models did not yield good

performance in predicting extreme runoff.

• The first hybrid modelling approach (i.e., CemaNeige

GR4H-WELM1 and CemaNeige GR4H-WRT1), which

uses actual evapotranspiration, routing store outflow

and direct flow obtained from the CemaNeige GR4H

model as input data, performed the best among all

hybrid models based on the evaluation criteria.

• The second hybrid modelling approach using the

variables, such as soil moisture index and percolation

as input data, improved the performance of the hourly

rainfall-runoff modelling. Similarly, the third hybrid

modelling approach using the variables, such as liquid

precipitation, solid precipitation, and snowpack as input

bFig. 15 The sensitivity analysis of input variables for the (a) first

hybrid model (i.e., CemaNeige GR4H-WELM1 and CemaNeige

GR4H-WRT1), (b) second hybrid model (i.e., CemaNeige GR4H-

WELM2 and CemaNeige GR4H-WRT2), (c) third hybrid model (i.e.,

CemaNeige GR4H-WELM3 and CemaNeige GR4H-WRT3)
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data, also improved the modelling performance. How-

ever, the third modelling approach yielded the worst

modelling performance among the hybrid models based

on the evaluation criteria.

• The hybrid models generally performed well in pre-

dicting minimum and maximum flows for each month

compared to stand-alone models. The CemaNeige

GR4H model yielded better simulation results for

minimum flows than for maximum flows, whereas the

WELM and WRT models performed poorly in predict-

ing minimum and maximum flows.

• Sensitivity analysis indicated that the QR and QD

variables in the first hybrid modelling approach, Perc,

Pn-Ps and AExch1 in the second hybrid modelling

approach, and SP in the third hybrid modelling

approach were influential variables for hourly runoff

prediction.

As can be seen in this study, using different outputs

obtained from the conceptual model as input data into the

machine learning models can be useful to observe the

improvement of modelling performance. Furthermore, the

hybrid modelling approach may have the potential to

improve the performance of rainfall-runoff modelling in

karst catchments. Implementing a hybrid modelling

approach can be useful for related stakeholders, research-

ers, and water management specialists regarding tackling

the drawbacks of the stand-alone models and simulating

the rainfall-runoff process in basins with nonhomogeneous

characteristics and karst systems. In this regard, future

studies will aim to use different conceptual and machine

learning models in the hybrid modelling approach and

implement the hybrid modelling approaches in the catch-

ments with various climate and catchment characteristics to

observe the transferability of related models. In addition,

analysis of the uncertainties in input data, model structures

and parameters and sensitivity analysis for the model out-

puts will be tackled in further studies.
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Writing—original draft C.S.; Writing—review & editing M.Š.
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temps horaire? Développements empiriques et comparaison de
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