Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo Jamova 2 1000 Ljubljana, Slovenija telefon (01) 47 68 500 faks (01) 42 50 681 fgg@fgg.uni-lj.si

Univerzitetni program Vodarstvo in komunalno inženirstvo

Kandidat: Matjaž Belca

Uporaba programa AQUIFAS pri dimenzioniranju MBBR reaktorja

Diplomska naloga št.: 96

Mentor: izr. prof. dr. Jože Panjan

Somentor: asist. dr. Mario Krzyk

IZJAVA O AVTORSTVU

Podpisani Matjaž Belca izjavljam, da sem avtor diplomske naloge z naslovom: » Uporaba programa AQUIFAS pri dimenzioniranju MBBR reaktorja«

Izjavljam, da se odpovedujem vsem materialnim pravicam iz dela za potrebe elektronske separatoke FGG.

Ljubljana, _____2008

STRAN ZA POPRAVKE, ERRATA

IZJAVE O PREGLEDU NALOGE

Nalogo so si ogledali:

BIBLIOGRAFSKO – DOKUMENTACIJSKA STRAN IN IZVLEČEK

UDK:	004.42:628.3(043.2)							
Avtor:	Matjaž Belca							
Mentor:	Izred. prof. dr. Jože Panjan							
Naslov:	Uporaba programa Aquifas pri dimenzioniranju MBBR reaktorja							
Obseg in oprema:	Ob. tekst 70, Št. pregl. 17, Št. slik 26, Št. enačb 16, Št. prilog 2;							
Ključne besede:	Program	Aquifas,	MBBR,	nosilci	biomase,	modeliranje,		
rekonstrukcija, nitrifikacija, denitrifikacija								

Izvleček

V diplomskem delu opisujem MBBR reaktor (moving bed biofilm reactor) in sodobno uporabo postopka pri čiščenju odpadne vode. Preizkusil sem različne programe, uporabne pri dimenzioniranju čistilnih naprav. Le nekaj od teh je omogačalo dimenzioniranje MBBR reaktorja. MBBR reaktor je v veliki meri rabljen za BPK/KPK odstranitev, kot tudi za nitrifikacijo in denitrifikacijo pri komunalnih in industrijskih odpadnih vodah. V diplomskem delu se osredotočam na komunalne odpadne vode. Prikazana je uporaba MBBR-a v izredno kompaktnih visoko obremenjenih procesih za sekundarno čiščenje. S programom Aquifas sem pokazal možnost modeliranja čistilnih naprav na podlagi osnovnih parametrov (Q, T, pH, KPK, BPK₅, NH₄-N in skupni P). Kvaliteto vode na iztoku reaktorja je mogoče spremeniti z različnimi nosilci biomase, različnim zaporednjem celic z različnimi pogoji (anoksičnimi, aerobnimi ali anaerobnimi) ali s količino kisika v reaktorju. Program Aquifas omogoča tudi dinamično modeliranje čistilnih naprav na podlagi on-line meritev. Program Aquifas 3 sem uporabil na primeru čistilne naprave v Račah pri Mariboru.

BIBLIOGRAPHIC – DOCUMENTALISTIC INFORMATION

UDC:	004.42:628.3(043.2)					
Author:	Matjaž Belca					
Supervisor:	Assoc. Prof. dr. Jože Panjan					
Title:	Constructing MBBR whit computer programme Aquifas					
Notes:	70 p., 16 tab., 26 fig., 16 eq.					
Key words:	Program Aquifas, MBBR, biomas carrier, modeling, reconstruction,					
	nitrification, denitrification					

Abstract

I am describing MBBR reactor in dissertation (moving bed biofilm reactor) and contemporarily use of procedure at cleaning of sewage. I tested a different programmes of useful at design waste water treatment plants. Only some from these is alow design MBBR reactor. MBBR reactor is in large extent was used for BOD/COD removal, as also for nitrification and denitrification at public utility and industrial sewages. I am concentrating on public utility sewages in dissertation. Showed is use MBBR in extra ordinarily compact highly charged processes for secondary cleaning (<1h hydraulic retension time). With programme Aquifas showed possibility of modeling wastewater treatment system based on basic parameters (Q, T, pH, COD, BOD₅, NH₄-N and TP). It is possible to change quality of water on outflow with different holder of biomass, different positions of cells with different conditions or with amount of oxygen in reactor. Programme Aquifas enables dynamically modeling of water treatment plants based on the on line measurement. Programme Aquifas 3 has been used on example of wastewater treatment plant in Rače.

ZAHVALA

Za pomoč, potrpežljivost in dragocen čas se zahvaljujem svojemu izrednemu profesorju dr. Jožetu Panjan ter somentorju dr. Mariu Krzyk.

Zahvaljujem se svojima staršema za podporo, vse vzpodbudne besede in dobre misli tekom svojega študija. Zaradi Vaju mi je uspelo.

Hvala tudi vsem, ki ste mi na kakršenkoli način pomagali in omogočili, da sem končal svoje diplomsko delo.

KAZALO VSEBINE

1 UVOD	1
2 NADGRADNJA OBSTOJEČIH ČISTILNIH NAPRAV Z MBBR REAKTOR	JEM4
2.1 Osnovne značilnosti MBBR	5
2.1.1 Nepotopljeni nosilci (Non-submersed Media Systems)	7
2.1.2 Potopljeni nosilci (Submersed Media Systems)	7
2.1.3 Prednosti in slabosti sistemov potopljenih in nepotopljenih nosilcev	8
2.2 Nosilci biomase v MBBR	9
2.2.1 Fizični prametri	9
2.2.2 Vpliv polnitve reaktorja	11
2.2.3 Prednosti uporabe MBBR pred postopki z razpršeno biomaso	13
2.3 Možnosti uporabe MBBR procesa	14
2.3.1 BPK/KPK odstranitev v kombinaciji z odstranjevanjem fosforja (P)	14
2.3.2 Visoko obremenjeni procesi za sekundarno čiščenje	16
2.3.3 Doseganje nitrifikacije s pomočjo MBBR	17
2.3.4 Doseganje denitrifikacije s pomočjo MBBR	20
2.3.5 Odstranjevanje dušika s pomočjo MBBR	21
2.3.6 Odstranjevanje organskega ogljika	23
3 PREDSTAVITEV PROGRAMA AQUIFAS	24
3.1 Uvod	24
3.2 Navodila za uporabo programa Aquifas	27
3.3 Numerični pristop uporabe semi-empirične enačbe za biofilm	29
3.4 Enačbe za izračun stopnje odstranitve amonijaka v programu Aquifas 3	
3.4.1 Stopnja odstranitve dušika s pomočjo nitrifikatorjev v biofilmu	31
3.4.2 Stopnja nitrifikacije biofilma določena s pomočjo pilotnih naprav	32
3.4.3 Odstranitev amonijevega dušika s pomočjo nitrifikatorjev v MLVSS (Mixe	ed liquor
volatile suspended solids)	33
3.4.4 Masna bilanca amonijevega dušika v posameznem reaktorju	34
4 RAČUNSKI PRIMER PRERAČUNA MBBR REAKTORJA	37

4.1 Uvod	37
4.2 Vhodni podatki	37
4.3 Parametri reaktorja in konfiguracija nosilcev	40
4.4 Določitev stopnje aearacije in pozicioniranje puhal za vpihovanje zraka	42
4.5 Rezultati	45
4.5.1 Kvaliteta iztoka pri efektivni specifični površini nosilca 325 m2/m3	45
4.5.2 Kvaliteta iztoka pri efektivni specifični površini nosilca 500 m2/m3	51
5 ZAKLJUČEK	57
VIRI	58
PRILOGE Napaka! Zaznamek r	ni definiran.
Priloga A: Obratovalni monitoring odpadnih vod komunalne čistilne naprave	e Rače
(avgust 2007) Napaka! Zaznamek n	i definiran.
Priloga B: Navodila za uporabo računalniškega modela Aquifas 3	4

KAZALO PREGLEDNIC

Preglednica 1: Različni modeli nosilcev biomase v MBBR, ki jih ponuja podjetje AnoxKaldnes

Preglednica 2: Efektivna speceifična površina v odvisnosti polnitve reaktorja

Preglednica 3: Simbolno označevanje celic potrebnih za vnos podatkov

Preglednica 4: Specifična površina biofilma in modeliranje precejalnikov in MBBR reaktorjev

Preglednica 5: Izmerjeni parametri na vtoku na čistilno napravo Rače (Občina Rače-Fram, 2007)

Preglednica 6: Volumen reaktorja in posameznih celic reaktorja

Preglednica 7: Pretok na čistilno, temperatura odpadne vode in zadrževalni čas v reaktorju (Program Aquifas 3, 2008)

Preglednica 8: Specifična površina biofilma in delež polnitve reaktorja (Program Aquifas 3, 2008)

Preglednica 9: Stopnja raztopljenega kisika v posameznih celicah (Program Aquifas 3, 2008)

Preglednica 9: Stopnja raztopljenega kisika v posameznih celicah (Program Aquifas 3, 2008)

Preglednica 10: Količina vpihovanega zraka v posamezno celico (Program Aquifas 3, 2008)

Preglednica 11: Potrebna izhodna moč inštaliranega puhala (Program Aquifas 3, 2008)

Preglednica 12: Količina vpihovanja kisika za potrebe vzdrževanja primerne količine biofilma (Dipankar Sen, 2008)

Preglednica 13: Mejne vrednosti za koncentracijo neraztopljenih snovi, amonijevega in celotnega dušika, KPK ter BPK₅ (Uradni list RS, št. 45/07)

Preglednica 14: Mejne vrednosti za koncentracijo amonijevega dušika ter za koncentracijo in učinek čiščenja celotnega dušika in celotnega fosforja (Uradni list RS, št. 45/07).

Preglednica 15: Primerjava med sedanjim stanjem iztoka iz čistilne naprave in iztokom po nadgradnji čistilne naprave z MBBR (K1)

Preglednica 16: Povprečne vrednosti parametrov na iztoku iz obstoječe ČN in za MBBR nosilce s specifično površino $500 \text{ m}^2/\text{m}^3$

Preglednica 17: Primerjava med sedanjim iztokom in nadgradnjo z MBBR in uporabo nosilcev K1 (efektivna specifična površina $325 \text{ m}^2/\text{m}^3$) in K3 (efektivna specifična površina $500 \text{ m}^2/\text{m}^3$).

KAZALO SLIK

Slika 1 : Aerobni reaktor z dodanimi nosilci in vpihovanjem z difuzorjem

Slika 2: Anaerobni reaktor z dodanimi nosilci in mešanjem z mešalom

Slika 3: Primer nosilca obloženega z biofilmom

Slika 4: Različni tipi nosilcev biomase podjetja Kaldnes

Slika 5: Nosilci biomase vstavljeni v pilotno čistilno napravo Domžale

Slika 6: MBBR reaktor v kombinaciji s povratnim blatom

Slika 7: Diagrami konfiguracij uporabe sistema MBBR Čiščenje BPK/KPK

Slika 8: Visoko obremenjen čistilni proces na osnovi MBBR, z nizkim doziranjem koagulanta in flotacijo.

Slika 9: Diagram konfiguracije sistema MBBR za čiščenje BPK/KPK

Slika 10: Anoksični reaktor za doseganje denitrifikacije

Slika 11: Različne konfiguracije uporabe MBBR reaktorja za potrebe odstranjevanja dušika

Slika 12: Razlika med biofilmom na površini nosilca v MBBR reaktorju na levi strani in med nosilcem v IFAS sistemu

Slika 13: Razlika med biofilmom na površini nosilca s krilci v MBBR reaktorju na levi strani in med nosilcom s krilci v IFAS sistemu

Slika 14: Shema delovanja programa Aquifas

Slika 15: Zasnova čistilne naprave v programu Aquifas 3

Slika 16: Nosilec biomase Kaldnes K3 in K1 (<u>www.koienterprise.com</u>, 20.10.2007)

Slika 17: Razmerje med volumnom reaktorja in efektivno specifično površino nosilca K1 biofilma

Slika 18: Profil KPK v MBBR reaktorju

Slika 19: Odstranitev KPK v biofilmu in v sistemu z razpršeno biomaso

Slika 20: Odstranitev NH4N in skupnega N v MBBR reaktorju

Slika 21: Odstranitev NH₄N v biofilmu in v sistemu z razpršeno biomaso

Slika 22: Volumen reaktorja in efektivna specifična površina nosilca K3

Slika 23: Potek KPK po posameznih posameznih celicah

Slika 24: Odstranitev KPK v biofilmu in v sistemu z razpršeno biomaso

Slika 25: Odstranitev NH₄N in skupnega N v MBBR reaktorju

Slika 26: Odstranitev NH4N v biofilmu in v sistemu z razpršeno biomaso

1 UVOD

V Sloveniji se projektanti redko poslužujejo uporabe računalniških modelov in simulacij z namenom dimenzioniranja čistilnih naprav za odpadne vode. Na tržišču obstaja veliko računalniških programov (BIOWin, Belebungs expert, GPS-X, Operator 10, Aquifas, ...), a le redki omogočajo dimenzioniranje MBR (membranski bioreaktor), IFAS (Integrated fixed film/Activated sludge) ali MBBR (reaktorji s premikajočimi nosilci biomase). Program Aquifas je zasnovan za različne skupine uporabnikov, kot so upravljalci čistilnih naprav, projektanti, inženirji ali študentje. Uporaba programa Aquifas je pregledna, saj je zapisan v excelovi datoteki. Zasnovan je v štirih izdajah, od najenostavnejše (en reaktor) do zelo kompleksnih dinamičnih simulacij z do dvanajstimi ločenimi celicami (reaktorji), ki omogačajo natančno preračunavanje.

V diplomski nalogi se bom osredotočil na novejše postopke čiščenja odpadne vode. Podrobneje bom predstavil MBBR reaktor kot zanimiv proces možne nadgraditve obstoječih konvencionalnih čistilnih naprav. Procesi z uporabo pritrjene biomase (MBBR) omogočajo večjo učinkovitost in stabilnost kot procesi aktivnega blata, še posebno pri nizkih temperaturah, ob prisotnosti inhibitornih snovi ter pri večjih in nihajočih obremenitvah. Poleg tega proces pritrjene biomase na splošno omogoča večjo učinkovitost zaradi selektivnega zadrževanja velike koncentracije aktivne biomase brez recikliranja blata oziroma biomase.

Program Aquifas je bil predstavljen novembra 2006 preko spletne strani podjetja Aquifas. Vodja projekta je dr. Dipankar Sen, ki vodi tudi videokonference in predstavlja program. Sodeloval sem na večih videokonferencah, kjer smo spoznavali program Aquifas in možnosti njegove uporabe. Obdelovali smo sisteme čiščenja odpadne vode sledečih tehnologij: IFAS, MBR, MBBR in postopkov z razpršeno biomaso. Sodelovanje je bilo brezplačno za študente in živeče izven ZDA. Sodelovali so inženirji iz Amerike, Azije in Evrope. Delo se je izvajalo na realnih podatkih čistilnih naprav, ki so bile v rekonstrukciji ali v fazi projektiranja. Do oktobra 2007 je bilo prijavljenih več kot 150 registriranih uporabnikov v več kot 40 državah. Število neprijavljenih uporabnikov je ocenjeno na 500. V naslednjih 2 letih predvidevajo doseči tržni delež primerljiv z ostalimi programskimi orodji namenjenimi dimenzioniranju čistilnih naprav. Program bo na voljo po ceni 200 dolarjev, kar je velika razlika z GPS-x, ki ga prodajajo po 20.000 dolarjev.

Preizkusil sem računalniški model Aquifas 3. Izmed štirih različnih verzij modela je bila izbrana verzija Aquifas 3, saj omogoča primerno kompleksnost izračuna. Aquifas 1 je najenostavnejši model, ki izračunava vrednost N na iztoku iz samega reaktorja in je dostopen na spletni strani podjetja Aquifas. Računalniški model Aquifas 2 je že bolj dodelan model, ki omogoča preračun večih celic znotraj reaktorja. Biološki reaktor lahko znotraj razdelimo na 12 ločenih celic. Vsaki celici lahko določimo različno funkcijo in pogoje (aerobne, anaerobne ali anoksične pogoje). Aquifas 3 omogoča konfiguriranje reaktorja, spreminjanje števila celic, spreminjanje količine vpihovanja kisika, spreminjanje specifične površine nosilcev in procent njihove polnitve ter mnogo drugih parametrov. Za vsako celico posebej model preračuna aerobne in anoksične pogoje za potrebe nitrifikacije, potrebo po kisiku, produkcijo biomase heterotrofnih mikroorganizmov in debelino biofilma. Aquifas 4 omogoča dinamičen preračun iztočnih parametrov tekom dneva. Podrobno se posveča debelini biofilma, produkciji blata in stopnji odstranitve substrata na podlagi difuzijskega modela.

Aquifas 3 je še posebaj primeren za:

- preračunavanje nitrifikacije in denitrifikacije pri IFAS procesu,
- preračunavanje denitrifikacije pri MBBR procesu,
- preračunavanje sekundarnega čiščenja pri MBBR procesu,
- preračunavanje MBR (membranski bioreaktor).

V drugem poglavju je opisan postopek čiščenja odpadne voda z uporabo tehnologije MBBR. Navedne so osnovne značilnosti delovanje postopka. Pomemben faktor čiščenja odpadne vode so vstavljeni nosilci biomase. Poznamo polietilenske nosilce, ki so razširjeni v Evropi in PVA-gel nosilce, ki jih uporabljajo predvsem na Japonskem. Podrobneje so opisani možni načini uporabe MBBR za odstranjevanje KPK in BPK, doseganje nitrifikacije in denitrifikacije, dušika in ogljika. V tretjem poglavju je predstavljen program Aquifas. Opisan in razložen je numerični pristop uporabe semi-empirične enačbe za biofilm. Uporabljati je mogoče še difuzijski model, ki je obravnavan v modelu Aquifas 4. Opisane in razložene so enačbe, ki jih uporablja program Aquifas 3 za izračun stopnje odstranitve amoniaka.

V četrtem poglavju je izveden preračun starejše obstoječe čistilne naprave Rače za primer nadgradnje z MBBR tehnologijo. Obstoječa čistilna naprava uporablja tehnologijo podaljšane aeracije za čiščenje odpadne vode. V prilogi Priloga A je priložen monitoring čistilne naprave, iz katerega so razvidni vhodni podatki, ki so bili uporabljeni pri dimenzioniranju čistilne naprave. Izvedena bosta dva modela v programu Aquifas 3, ki se bosta razlikovala le po efektivni specifični površini nosilca biomase. Za primer bosta vzeta nosilca biomase K1 in K3 podjetja Kaldnes iz Norveške, ki v prodajnih katalogih ponuja tehnične informacije o efektivni specifični površini nosilcev biomase proizvedenih v podjetju.

2 NADGRADNJA OBSTOJEČIH ČISTILNIH NAPRAV Z MBBR REAKTORJEM

Čistilne naprave, starejše od dvajset let, se velikokrat srečujejo s povečano obremenitvijo. Na čistilne naprave se navezujejo dodatne populacijske enote, saj smo v zadnjih letih priča intenzivni gradnji stanovanjskih objektov. Z vstopom Slovenije v EU smo sprejeli zaostrene standarde vsebnosti škodljivih snovi na iztoku iz čistilne naprave. Njihov namen je obvarovati vodni življenjski prostor in ohraniti vodne vire za prihodnje generacije. Zemljišča, ki obkrožajo čistilno napravo, praviloma niso na voljo ali po visoki prodajni ceni. Pridobivanje parcel, gradbeni inženiring, gradbeni stroški za dodatne prezračevalne bazene in usedalnike lahko zelo obremenijo občinske proračune.

MBBR deluje na podlagi polietilenskih nosilcev, na katerih se naseli biofilm. Ko so dodani v biološki reaktor, ti nosilci zagotavljajo veliko površino za razrast biofilma (biomase). Velikost nosilcev, geometrija in specifična notranja površina nosilca so pomembni dejavniki pri delovanju MBBR. Nadgradnja se izvede enostavno z dodajanjem nosilcev v že obstoječi biološki bazen in je izvedena z nizkimi investicijskimi stroški, ter razmeroma hitro brez posebnih inženirskih zahtev. Potrebna je posodobitev aeracijskega sistema, ki mora zagotavljati določeno velikost vpihovanih mehurčkov zraka in količino zraka v aeriran biološki del reaktorja.

V nadaljevanju so predstavljene osnovne značilnosti MBBR, njihov razvoj ter prednosti in slabosti sistemov s pritrjeno biomaso. Podrobneje so opisani nosilci biomase, njihov pomen na sposobnost čiščenja odpadne vode in opredeljen je vpliv na delež polnitve reaktorja z nosilci biomase. Navedene in opisane so različne možnosti uporabe MBBR procesa za potrebe čiščenja ogljika, dušika in fosforja. Razložena sta procesa nitrifikacije in denitrifikacije, če so uporabljeni polietilenski nosilci biomase.

2.1 Osnovne značilnosti MBBR

V nasprotju z večino reaktorjev z biomaso, MBBR koristi celoten volumen biološkega reaktorja za razrast biomase. MBBR primarno ne potrebuje povratnega toka blata. Mikroorganizmi se obdržijo znotraj biološkega reaktorja z obraščanjem dodanih nosilcev in

tvorijo tanek sloj biofilma. Biološki reaktor z vstavljenimi nosilci je prikazan na sliki (Slika 1). Ti nosilci se prosto gibljejo v reaktorju ali so spravljeni v poseben mrežast boben. Odstranjen mora biti le višek biomase in ni potrebe po povratnem črpanju aktivnega blata v reaktor, kar je velika prednost pred procesom povratnega blata. To velja le za male kompaktne čistilne naprave. Reaktor se lahko uporablja za aerobne, anoksične in anaerobne procese. (Odegaard, H. 2006)

Slika 1 : Aerobni reaktor z dodanimi nosilci in vpihovanjem z difuzorjem

V aerobnih procesih je premikanje dodanih nosilcev omogočeno z mešanjem s pomočjo zračnih mehurčkov (vpihovanje zraka), medtem ko je v anoksičnih in anaerobnih pogojih mešanje nosilcev omogočeno s horizontalnimi mešali (Slika 2).

MBBR vključuje dva bistvena biološka procesa čiščenja. Tehnologijo čiščenja odpadne vode, ki uporablja pritrjen biofilm ter tehnologijo, ki uporablja razpršeno biomaso (aktivno blato). Z združitvijo obeh tehnologij dobimo postopek, ki je sposoben čiščenja visoko obremenjene odpadne vode v majhnih volumnih.

Pritrjen biofilm zadržuje veliko količino biomase znotraj reaktorja in tako dovoljuje višjo stopnjo obremenitve in posledično manjši volumen, kot bi ga za enako obremenitev potrebovali v primeru uporabe postopkov z razpršeno biomaso.

Slika 2: Anaerobni reaktor z dodanimi nosilci in mešanjem z mešalom

Pri napravah z aktivnim blatom poteka proces razvijanja aktivne biomase z razvojem zoo bakterij, ki jih kasneje kolonizira protozoa. Le-ta se hrani s prosto plavajočimi bakterijami in proizvaja predelano blato. Pri MBBR je vrstni red naselitve obrnjen. Visoka stopnja

obremenitve, približno 30 g KPK/m² dan proizvaja kompaktni bakterijski biofilm s praživalmi (Protozoa). Srednja stopnja obremenitve, okoli 10 – 15 g KPK/m² dan, povzroča bolj mehak biofilm z bogato raznovrstnostjo enoceličarjev. Nizka stopnja obremenitve < 5 g KPK/m² na dan povzročajo nastanek zelo mehkega biofilma, kjer dominirajo bičkasti migetalkarji (Odegaard, H. 2006).

2.1.1 Nepotopljeni nosilci (Non-submersed Media Systems)

Sistemi s pritrjeno biomaso so široko v uporabi zaradi enostavne inštalacije in sposobnosti zadržanja velike količine biomase. Nepotopljene nosilce najdemo v precejalnikih in biostolpih, kjer se uporablja množica različnih polnil. Dandanes prevladuje plastika, najdemo pa tudi kamene in peščene nosilce. Kljub mnogim prednostim in razširjeni uporabi ima tehnologija pomebne omejitve, ki ji jih je potrebno upoštevati. Najpomembnejše omejitve so:

- omejen pretok preko filtra (precejalniki),
- zamašitev filtra z žuželkami,
- povečanje neprijetnih vonjav in
- povečana biološka razrast.

2.1.2 Potopljeni nosilci (Submersed Media Systems)

Pomemben napredek tehnologije pritrjenega biofilma predstavljajo potopljeni nosilci, kjer je biomasa pritrjena na nosilcih in posledično potopljena v vodo. Pritrjevanje biofilma na nosilec biomase je prikazan na sliki (Slika 3). Potreben je sistem za dovajanje zraka, ki omogača med drugim premikanje nosilcev. Zaradi medsebojnih trkov med nosilci se odvečen del biofilma odlušči. Plastični nosilci, vrvi, mreže ali posebne gobe nudijo dodatno površino za prirast biomase v že obstoječih bazenih.. Zapolnitev in razpad medija ob izpraznitvi reaktorja mora predstavljati prav tako pomembno skrb upravljalca čistilne naprave. Dodatna omejitev in stroški so povezani s potrebo strojne opreme v reaktorju.

Slika 3: Primer nosilca obloženega z biofilmom

Ozračeni biofiltri so ena izmed možnosti potopljenih nosilcev in imajo izboljšan masni pretok snovi v primerjavi s precejalniki. Izboljšan masni pretok je posledica sposobnosti kontroliranja količine kisika in kotrole odluščevanja biomase s površine nosilca. Tehnologija potopljenih nosilcev je občutljiva na kratkočasno cirkulacijo in neenako odluščevanje biomase. Nevarno je razraščanje nezaželenih organizmov, ki jih ni mogoče odstraniti z vsakodnevnim povratnim spiranjem (Vestlind, 2003).

2.1.3 Prednosti in slabosti sistemov potopljenih in nepotopljenih nosilcev

Premikanje medija s pritrjenim biofilmom združuje prednosti sistemov s pritrjeno biomaso in razpršeno biomaso brez večjih omejitev. Koncept premikajočega fiksnega biofilma izboljšuje masni pretok kisika in polutantov. Sistem omogoča uporabo tako za majhne kot tudi za velike sisteme na podlagi različnih zasnov nosilcev. Posledica premikanja nosilcev se kaže v izboljšanem masnem pretoku snovi, povečanem odlepljanju in omejevanju difuzije biofilma preko avtomatske kontrole debeline biofilma. Za kvalitetno delovanje čistilnega procesa s premikajočimi nosilci je potrebno zagotoviti enakomeren in tanki biofilm, ki ga zagotavljajo aktivne populacije nitrifikatorjev. Potebno je reducirati neomejeno rast heterotrofov, tipičnih pri zablatenju statičnih medijev (Odegaard, H. 2006).

Danes je poznanih veliko različnih nosilcev, na katere se pritrjuje biomasa, kot so na primer: plastične kroglice, polietilenski nosilci, gobice ali dodajanje aktivnega oglja. Pomembne lastnosti nosilcev so:

- velikost,
- poroznost,
- odpornost na obrabo,
- pritrjevanje in obstojnost biofilma na nosilcu in
- specifična teža (Morgenroth and Wilderer, 2000).

Dodajanje aktivnega oglja in drugih finih delcev v reaktor z namenom pritrjevanja biofilma je nagnjeno k hitri obrabi in veliki verjetnosti iztekanja nosilcev na iztoku (Nicolella, 2000). Kontroliranje odlepljanja in debeline biofilma je zelo težavno. Medij iz gobe ponuja veliko površine za razrast biofilma, vendar zahteva konstantno odlepljanje biomase v natančno zasnovanih kanalčkih, kjer mora biti preprečena zapolnitev. Medij iz gobe je podvržen hitri degradaciji zaradi poroznosti in močni zunanji obrabi. Menjava medija za uspešno delovanje se priporoča enkrat letno (Odegaard, H. 2006).

2.2 Nosilci biomase v MBBR

2.2.1 Fizični prametri

V svetu je poznanih več podjetij, ki izdelujejo polietilenske nosilce. V splošnem so si zelo podobni. Želja je dosegati čim večjo specifično površino biofilma. Povečini so modeli patentirani. Karakteristike različnih modelov nosilcev so prikazane v preglednici (Preglednica 1). Normalna specifična teža nosilca je malo nižja kot specifična teža vode, med 0,94 in 0,96 kg/dm³. Ta karakteristika omogoča nosilcem boljše mobilne karakteristike (premikanje nosilcev) znotraj reaktorja, kar rezultira v popolno premešanje. Nosilci se razlikujejo po specifični površini, ki je odvisna od velikosti, oblike in geometrije. Zaradi agresivnega luščenja biomase na zunanji površini, ki je posledica fizičnega kontakta med posameznimi nosilci, ne upoštevamo zunanjih površin nosilcev kot efektivno specifično površino (Odegaard, 2000).

Model	Dolžina (mm)	Premer (mm)	Zaščitena površina (m²/m³)	Skupna površina (m²/m³)
K1	7	9	500	800
К3	12	25	500	600
Natrix C2	30	36	220	265
Natrix M2	50	64	200	230
Biofilm-Chip M	2,2	48	1200	1400
Biofilm-Chip P	3,0	45	900	990

Preglednica 1: Različni modeli nosilcev biomase v MBBR, ki jih ponuja podjetje AnoxKaldnes

Geometrijska zasnova nosilca pomembno vpliva na debelino biofilma in stopnjo čiščenja, ki jo je posamezna vrsta nosilca sposobna čistiti. Primerno razmerje mora biti doseženo med čim večjo specifično površino in vzdrževanjem primerne prehodnosti nosilca za odpadno vodo in zrak. Primerna prehodnost ohranja zadovoljivo rast in odplavljanje biomase. Lahko bi si zamislili mikroskopske nosilce, ki bi imeli veliko specifično površino tudi preko 1000 m²/m³. Tako majhni možni pretočni prostori postajajo neučinkoviti zaradi nizkih pretočnih hitrosti in možnosti hitrega zamašenja.

S pomočjo programa Aquifas bom v nadaljevanju diplomske naloge preračunal spremembo iztočnih parametrov čistilne naprave, če uporabimo nosilce biomase podjetja Kaldnes. Najpogosteje uporabljeni nosilci podjetja Kaldnes so prikazani na sliki (Slika 4). Najpogosteje uporabljen nosilec biomase je nosilec z oznako K1. Narejen je iz polietilena z visoko specifično težo (specifična teža 0.95 g/cm3). Oblikovan je kot majhen cilinder z višino 7 mm in premerom 10 mm. Znotraj cilindra je zasnovan križ, na zunanji strani pa pravokotne plavuti, ki omogočajo intenzivnejše premikanje znotraj reaktorja čistilne naprave. Uporaba nosilcev različnih oblik in velikosti je odvisna od velikosti čistilne naprave, biološke obremenitve odpadne vode, hidravličnih zahtev in količine polnitve (Odegaard, H. 2006).

Slika 4: Različni tipi nosilcev biomase podjetja Kaldnes

Veliki efektivni premer nosilca poveča koeficient masnega prenosa snovi. Na podlagi raziskovalne študije je bilo ugotovljeno, da so masni prenos snovi, gostota biofilma in stopnja pretvorbe hranil v strogi povezavi z obremenitvijo hranil v reaktorju ter s hidravličnimi pogoji. Torej večje odprte površine v nosilcih povečujejo masni pretok (Vesilind, 2003).

Različna območja nosilca imajo različne lastnosti biofilma (sprijemnost, luščenje biofilma). Zunanja rebra in grebeni so pogosto všteta v površino medija, vendar imajo zanemarljiv prispevek prekrite površine biofilma, saj se zunanji deli pogosteje luščijo zaradi pogostih trkov med posameznimi nosilci (Odegaard, 2000).

2.2.2 Vpliv polnitve reaktorja

Pomembna prednost MBBR je v možnosti spreminjanja polnilnega deleža v reaktorju. Na tak način posredno spreminjamo količino pritrjene biomase v biološkem reaktorju. Sprejet standard deleža polnjenja znaša 67% volumna biološkega reaktorja. To velja, ko govorimo o polietilenskih nosilcih podjetja Kaldnes. Japonsko podjetje Kurraray izdeluje PVA-nosilce

biomase, kjer znaša delež polnjenja biološkega reaktorja le do 15% volumna reaktorja. V Sloveniji trenutno deluje le ena pilotna čistilna naprava v Domžalah (Slika 5).

Slika 5: Nosilci biomase vstavljeni v pilotno čistilno napravo Domžale

Raziskave so pokazale tipično koncentracijo biomase, ko računamo na prostornino reaktorja. Ta koncentracija znaša 2-5 kg SS/m³ in je približno podobna koncentraciji reaktorja z aktivnim blatom. Stopnja čiščenja na volumen je pri MBBR nekajkrat višja kot pri raktorju z aktivnim blatom (Rusten 1998).

Količina polnitve biološkega reaktorja posredno vpliva na delovanje biofilma. Potrebno je najti pravo količino polnitve, kjer bodo trki med posameznimi nosilci biomase ravno pravšnji, da se bo vzdrževala optimalna debelina biofilma. Ponavadi znaša manj kot 100 µm. Idealen biofilm je tanek in enakomerno porazdeljen po celotni površini nosilca. To dosežemo z vpihovanjem zraka, kar posledično povzroča premikanje nosilcev v reaktorju. Rezultat premikanja nosilca v reaktorju je transport biofilma po reaktorju in tanek biofilm, ki ga luščijo strižne sile. Veliko več biomase raste na notranji strani nosilca kot na zunanji. Glavni razlog je prav abrazija, ki jo povzročajo trki med nosilci in tako onemogočajo razrast biomase na zunanji strani nosilca. (Odegaard, H. 2006)

2.2.3 Prednosti uporabe MBBR pred postopki z razpršeno biomaso

Obstoječe naprave z aktivnim blatom so pogosto omejene s količino razpršene biomase (MLSS). Z združitvijo sistema s povratnim blatom in plavajočimi nosilci, dobimo zelo visoko koncentracijo biomase, ki ni nujno povezana s povečanjem MLSS (mixed liquid suspended solids). Prednost tega postopka je tudi izničenje povezave med starostjo blata in koncentracijo MLSS. Sistem aktivnega blata se zanaša na povečevanje zadrževalnega časa blata, kar posledično povzroča povečevanje koncentracije MLSS. V primeru MBBR se dosega podaljšan zadrževalni čas z zadrževanjem nosilcev v reaktorju, kar prekinja povezavo med koncentracijo razpršenih delcev in starostjo blata. To omogoča doseganje nitrifikacije znotraj nosilca. Doseganje nitrifikacije omogoča zadrževanje biomase in povečevanje razpoložljive biomase.

Dodatna biomasa, ki jo zagotavljajo nosilci v reaktorju, povečuje stopnjo odstranitve na pripadajoči volumen z majhnim prispevkom k snovni obremenitvi. Princip uporabe in lokacija MBBR v čistilnem procesu je prikazana na sliki (Slika 6). Pogosto na tak način odstranjujejo potrebo po dodatnih bazenih in usedalnikih. Premikanje fiksnega filma v reaktorju pripomore k popolnemu premešanju razpršene biomase v reaktorju. Težave z zamašitvijo nosilcev se pri popolnem premešanju ne pojavljajo. Močno premešanje tekočine v reaktorju in povečanje volumna s pomočjo dodanih nosilcev pripomorejo k širši uporabi konvencionalnega postopka povratnega blata (Odegaard, H. 2006).

MBBR je enostaven za operiranje in omogoča uporabo majhnih volumnov reaktorjev v primerjavi s konvencionalnimi sistemi. IFAS (Integrated fixed-film aerated system) postopek se najpogosteje uporablja na poljubni že obstoječi konvencionalni čistilni napravi, ki omogoča dovajanje povratnega blata.

Slika 6: MBBR reaktor v kombinaciji s povratnim blatom

2.3 Možnosti uporabe MBBR procesa

MBBR je lahko rabljen za različne namene in uporabo. Postopek je bil iznajden v času podrobnega znanstvenega proučevanja odstranjevanja dušika. Kasneje je prišlo do nadaljnega raziskovanja odstranjevanja organske snovi, ki je vključevalo tudi visoko obremenjene objekte predčiščenja kot nadgradnjo postopkov aktivnega blata. Proces za visoko obremenjeno sekundarno čiščenje temelji na premikajočih nosilcih (MBBR) v kombinaciji z koagulacijo. Rezultat je totalni zadrževalni čas manj kot 1 uro. Raziskave so bile narejene tudi v smeri odstranjevanja fosfatov, ki temelji na SBR principu (Helness, 2001).

2.3.1 BPK/KPK odstranitev v kombinaciji z odstranjevanjem fosforja (P)

Zaradi kompaktnosti procesa bo zadrževalen čas pri odstranjevanju BPK/KPK zelo kratek. Traja le od 15 – 90 minut, ko obravnavamo zmerne organske obremenitve. Biorazgradljiva, topna organska snov, je hitro razgradljiva. V želji, da določimo stopnjo razgradnje organske snovi neodvisno od separacije biomase, moramo pogledati stopnjo čiščenja topne KPK. V veliki večini evropskih držav je zahtevano odstranjevanje fosforja iz odpadne vode. Primer čiščenja odpadne vode (BPK/KPK odstranitev in odstranitev P) je prikazan na sliki. Tak način čiščenja odpadne vode je pogost v skandinavskih državah (Slika 7). Lahko se uporablja tudi v visoko obremenjenih sistemih le za odstranjevanje BPK brez predhodnega usedalnika, če se uporablja večje nosilce biomase (K2). Te naprave morajo biti projektirane s primernimi flokulacijskimi reaktorji, ki lahko uporabljajo železov klorid, aluminij, aluminijev klorid kot možne koagulante. (Odegaard, H. 2006)

Slika 7: Diagrami konfiguracij uporabe sistema MBBR Čiščenje BPK/KPK

Nadgradnja s konvencionalnim postopkom aktivnega blata zahteva velike aeracijske bazene in izgradnjo novih usedalnih bazenov za potrebe aktivnega blata. V primeru uporabe MBBR je v večini primerov zadovoljiva uporaba že obstoječih bazenov. Pri temperaturi do 8 ^oC mora biti zagotovljeno čiščenje, pri organski obremenitvi MBBR do 25g KPK/m²/dan. Tak način obdelave odpadne vode bo zmanjšal stroške kemijskega doziranja najmanj za 30%. (Odegaard, H. 2006).

2.3.2 Visoko obremenjeni procesi za sekundarno čiščenje

Nov koncept je bil razvit za sekundarno čiščenje (Slika 8), ki temelji na kombinaciji visoko obremenjenega procesa s pritrjenim biofilmom v kombinaciji z nizkim odmerkom koagulanta. Proces se kombinira s finimi siti za predčiščenje in flotacijo za ločevanje biomase, kar zagotavlja zadrževalen čas manj kot 1 uro. (Odegaard, H. 2006)

Slika 8: Visoko obremenjen čistilni proces na osnovi MBBR, z nizkim doziranjem koagulanta in flotacijo.

Proces temelji na dejstvu, da je precejšen delež organske snovi (65 – 85%) in pomemben delež fosforja (35 – 55%) v odpadni vodi kot suspendirana snov in kot koloidna snov (Mels, 2002). Neposredna ločitev suspendiranih in koloidnih delcev s kemijsko koagulacijo odstranjuje 65 – 75% organske snovi. Obstajata dve veliki slabosti pri konvencionalni koagulaciji odpadne vode v pogledu sekundarnega čiščenja:

- precejšen del raztopljene organske mase ni odstranjen,
- obarjanje kovinskih hidroksidov (AL in Fe) vodi do visoke produkcije blata (Odegaard, 2000).

Proces je sestavljen iz predčiščenja s finimi siti (ali obstoječi primarni usedalniki), ki mu sledi visoko obremenjen MBBR. Po tem sledi obarjanje s kovinskimi koagulanti in biomasa se ločuje iz vode s flokulacijo. Procesa koagulacije in flokulacije skrbita torej za suspendirano in koloidno snov, medtem ko biofilm očisti lahko biorazgradljivo, raztopljeno organsko snov. Kationski polimeri omogočajo nizko doziranje železovih ionov ter tako hidroksidno obarjanje in posledično prihaja do produkcije blata. Flotacijo izberemo zaradi visoke obremenitve bioreaktorja, ker se lahko pojavlja slaba usedljivost. (Odegaard, H. 2006)

V visoko obremenjenih procesih je zadrževalni čas zelo pomemben. Reaktor mora biti razdeljen v posamezne celice. Za doseganje standardov sekundarnega čiščenja, celotna obremenitev ne sme presegati 20 - 25 g KPK/m² površine biofilma (ali 15 - 20 g BPK₅/m² površine biofilma). To pomeni obremenitve pri MBBR 65 - 85 g KPK /m² površine biofilma v tipični odpadni vodi, kar pomeni 2 - 4 višjo vrednost kot pri tradicionalnih reaktorjih z biofilmom.

2.3.3 Doseganje nitrifikacije s pomočjo MBBR

Hramba biomase v notranjosti nosilca predstavlja primerno tehnologijo za doseganje nitrifikacije v obstoječem reaktorju. Počasi rastoči nitrifikatorji se obdržijo znotraj nosilca in omogočajo odstranjevanje amoniaka v odsotnosti podaljšanega zadrževalnega časa (kot se zahteva pri postopkih z aktivnim blatom). Pri vseh bioloških sistemih je potrebna nizka stopnja BPK, zadostna količina kisika in primerna alkalnost za uspešen proces nitrifikacije.

Stopnja rasti nitrifikatorjev je v tesni povezavi s temperaturo odpadne vode in se tekom procesa lahko spreminja v odvisnosti od temperature. Nosilci, prekriti z biofilmom, se lahko uporabljajo za krepitev nitrifikacije v obstoječih bazenih z ali brez povratnega blata. Možna je simultana uporaba ali uporaba v ločenih stopnjah nitrifikacije (Featherstonhaugh, D. 2003).

Heterotrofne bakterije bodo uspešno tekmovale z avtotrofnimi bakterijami zaradi njihovih višjih rasnih razmerij. BPK mora biti nizka zaradi možnosti uspešnega tekmovanja z autotrofnimi bakterijami znotraj biofilma. Začetek procesa nitrifikacije opazujemo pri obremenitvi 3,5 do 5g BPK/m²/d. Autotrofne bakterije ponavadi najdemo v biofilmu pod

zunanjim slojem heterotrofnih bakterij (Nogueira, 2002). Hitro rastoči heterotrofi lahko nadomestijo visoko stopnjo odluščevanja biofilma na površini. Izkaže se velik pomen hidrodinamičnih sil in vzorcev odlepljanja biofilma, ki vpliva na stopnjo nitrifikacije in selekcijo med heterotrofi in autotrofi (Featherstonhaugh, D. 2003).

MBBR je rabljen za procese nitrifikacije v različnih situacijah. Shema treh zaporednih MBBR reaktorjev je prikazana na sliki (Slika 9). Nitrifikacija je dosežena z dodajanjem nosilcev v reaktor, ki je že odstranil večino organske snovi. V nasprotju s sistemi z aktivnim blatom pri uporabi MBBR heterotrofi dominirajo v začetku procesa in nitrifikatorji na koncu procesa (zadnji reaktor). Tak način porazdelitve mikroorganizmov nam omogoča kontroliranje procesa nitrifikacije (Odegaard, H. 2006).

Na uspešno delovanje procesa nitrifikacije pomembno vplivajo trije dejavniki:

- organska obremenitev,
- koncentracija amonija in
- koncentracija kisika.

Slika 9: Diagram konfiguracije sistema MBBR za čiščenje BPK/KPK

Organska obremenitev mora biti čim nižja možna, zato je tudi zahtevana predhodna odstranitev velikega dela organske obremenitve v sekundarni fazi čiščenja odpadne vode. Pri organski obremenitvi preko 4 g BPK₇/(m²*dan) je zahtevana visoka koncentracija kisika (> 6 mg O₂/l) za doseganje nitrifikacije. Koncentracija amonijevega dušikaa je edini omejitveni faktor stopnje dosežene koncentracije pri nizki koncentraciji NH₄-N (< 1 – 3 NH₄-N/l). Ko preseže koncentracija vrednost 3 mg NH₄-N/l, je stopnja dosežene nitrifikacije odvisna le od koncentracije kisika in organske obremenitve (Odegaard, H. 2006).

Najpomembnejši vpliv na stopnjo dosežene nitrifikacije ima koncentracija kisika, ki lahko zavira nitrifikacijo tudi pri koncentraciji kisika čez 2-3 mg O_2/l . Stopnja nitrifikacije je blizu linearne pri koncentraciji kisika čez 10 mg O_2/l . Prednost linearne odvisnosti med koncentracijo kisika in stopnjo nitrifikacije je uspešno kontroliranje procesa čiščenja odpadne vode (Odegaard, 2000).

2.3.4 Doseganje denitrifikacije s pomočjo MBBR

Pomembni dejavniki, ki vplivajo na potek denitrifikacije so:

- koncentracija BPK,
- koncentracija raztopljenega kisika,
- razpoložljiva biomasa, sposobna reducirati nitrate.

Visoka koncentracija biomase, obešena na nosilce, vodi do visokih stopenj odstranjevanja nitratov v anoksičnem reaktorju. Kot zunanji vir ogljika je mogoče uporabiti etanol (C_2H_5 -OH) ali metanol (CH_3 -OH). Možna je uporaba izvornega ogljika prisotnega v odpadni vodi. V procesu pred denitrifikacijo je pojavljanje vira ogljika združeno z reciklom za potrebe nitrifikacije in denitrifikacije. Povratni nitratni recikel prihaja v stik z dotokom ogljika. Potencialne načrtovalne omejitve:

- povratek zadostne količine raztopljenega kisika,
- redčenje vira ogljika.

Delež pritrjenih dotočnih raztopljenih delcev na površino grobega biofilma se pretvori s hidrolizo. Iz tega sledi povišanje BPK učinkovitosti. Zunanji vir ogljika se lahko uporabi v postdenitrifikacijskem reaktorju, ki dosega višje stopnje odstranjevanja nitratov. To se zgodi zaradi visoke stopnje kinetike teh substanc. Mešanje v denitrifikacijskem reaktorju poteka s potopljenim mešalom (Slika 10). Mešanje poteka počasi, da se oblikuje primeren vzorec tokov, ki ustreza nosilcem biomase. Za potrebe doseganja željene stopnje denitrifikacije se uporablja etanol ali metanol med 4 g in 6 g BPK/NO₃-N (Featherstonhaugh, 2003).

Denitrifikacijski proces izkorišča nitrate kot elektronske akceptorje. Odstranitev nitratov je dosežena skozi bio oksidacijo ogljika, kar pomeni BPK/KPK odstranjevanje. Preddenitrifikacijski proces manjša potrebo po kisiku v aerobnem bazenu z manjšanjem BPK koncentracije v odsotnosti kisika. Potrebna je zmanjšana količina prisotnega zraka.

Slika 10: Anoksični reaktor za doseganje denitrifikacije

Dosežena stopnja denitrifikacije je odvisna od:

- koncentracije nitratov,
- koncentracije biorazgradljive organske snovi,
- koncentracije kisika (prisotnost kisika).

2.3.5 Odstranjevanje dušika s pomočjo MBBR

Odstranjevanje dušika v MBBR se lahko dosega na različne načine. Eden izmen možnih načinov postavitve posameznih reaktorjev je prikazan na sliki (Slika 11). Anoksični reaktor je postavljen pred aerobni reaktor. Prikazan je povratni nitratni recikel. Možna je še postavitev anoksičnega reaktorja za aeroebni reaktor. Uporabo MBBR za potrebe denitrifikacije je možna tudi s pozicioniranjem MBBR reaktorja za procesom z aktivnim blatom.

Če je kisik voden v reaktor z dovodno vodo ali recirkulirano vodo, bo biorazgradljiva organska snov porabljala vir kisika za dihanje in tako zmanjševala razpoložljivo količino kisika za potrebe denitrifikacije. Na ta način ne dosegamo potrebnih zahtev za ustrezen potek procesa denitrifikacija.

Slika 11: Različne konfiguracije uporabe MBBR reaktorja za potrebe odstranjevanja dušika

Omejitev procesa denitrifikacije je posledica dejstva, da s kisikom bogata voda iz nitrifikacijske stopnje mora biti vodena v preddenitrifikacijsko stopnjo. Potrebne količine ogljika v surovi odpadni vodi pogosto niso zadostne in denitrifikacijska stopnja v preddenitrifikacijskem sistemu je omejena z razpoložljivo količino kisika. (Odegaard, H. 2006)

2.4.6 Odstranjevanje organskega ogljika

Odstranjevanje organskega ogljika je v sistemih z aktivnim blatom doseženo z razmeroma nizkim zadrževalnim časom. Povečanje BPK obremenitve od rastočega prebivalstva, industrije in intenzivnega kmetijstva vodi do preobremenjevanja čistilne naprave. Pojavi se potreba po dodatni biomasi. Sistema MBBR razbremeni čistilno napravo in potrebo po gradnji novih objektov predčiščenja.

Zadrževanje visoke količine premešane tekočine lahko vodi do težav. Ko stopnja onesnaženosti vode v primeru razpršene biomase pada, delež razpršenih inertnih delcev posledično narašča.

Polietilenski nosilci so lahko dodajani obstoječim reaktorjem z aeracijo. Sledi povečanje biomase brez pomembnega povečanja obremenitve. Pomemben del biomase se zadrži znotraj nosilca, kar preprečuje izpiranje, zagotavlja zaščito proti toksičnim vdorom in konstantno količino biolma. Rezultat je povečanje možne BPK obremenitve čistilne naprave ali obratno možnost manjših volumnov za obstoječo obremenitev (Sen, 2006).

3 PREDSTAVITEV PROGRAMA AQUIFAS

3.1 Uvod

Program Aquifas sem našel med iskanjem cenovno ugodnih in kvalitetnih programov, ki omogočajo dimenzioniranje čistilnih naprav. Med drugim sem preizkusil programe: Belebungs Expert, BioWin in GPS-X. Program Aquifas sestavljajo ločene excelove datoteke, ki so med seboj povezane in omogočajo uporabo podatkov ali rezultatov različnih verzij. Program je sestavljen iz štirih različnih verzij: Aquifas 1, Aquifas 2, Aquifas 3 in Aquifas 4. Aquifas 1 je najenostavnejši model, ki izračunava vrednost N na iztoku iz samega reaktorja. Aquifas 2 je že bolj dodelan model, ki omogoča preračun večih celic znotraj reaktorja. Aquifas 3 omogoča konfiguriranje reaktorja, spreminjanje števila celic, spreminjanje količine vpihovanja kisika, spreminjanje specifične površine nosilcev in procent njihove polnitve ter mnogo drugih parametrov. Aquifas 4 omogoča dinamičen preračun iztočnih parametrov tekom dneva. Podrobno se posveča debelini biofilma, produkciji blata in stopnji odstranitve substrata na podlagi difuzijskega modela. Model lahko simulira procese z eno do dvanajst ločenih celic. Celicam (razdelkom) lahko poljubno spreminjamo zaporedje in jim poljubno spreminjamo aerobne, anaerobne in anoksične pogoje. Za vsako celico posebej model preračuna aerobne in anoksične pogoje za potrebe nitrifikacije, potrebo po kisiku, produkcijo biomase heterotrofnih mikroorganizmov in debelino biofilma (Sen, 2007).

Široko je pokrita uporaba inovativnih postopkov čiščenja. S pomočjo programa Aquifas lahko modeliramo konvencionalne postopke z aktivnim blatom, membranske bioreaktorje (MBR), reaktorje s premikajočimi nosilci biomase (MBBR), integrirane reaktorje z fiksno in pritrjeno biomaso (IFAS) in biološke aerirane filtre.

Računalniški program Aguifas omogoča:

- določevanje stopnje predčiščenja,
- operiranje s sekundarno stopnjo čiščenja in
- določanje dosežene stopnje nitrifikacije in denitrifikacije.
Model podaja izračune za različne količine biofilma in razpršene biomase. Če modelu ne podamo biofilma, predpostavi postopek z razpršeno biomaso. V primeru uporabe nosilcev biofilma v sistemu z razpršeno biomaso odstranjevanje raztopljenih snovi dopolnjuje tehnologija MBBR.

Tip čiščenja	Delež polnitve reaktorja	Efektivna specifična površina		
	(%)	(m^2/m^3)		
Aktivno blato	0	0		
IFAS – Fiksna posteljica	50 -80	10 -100		
Premikajoča posteljica –	20 -40	100 - 150		
goba				
Premikajoča posteljica -	30 - 60	150 -300		
plastika				
Biološki aeriran filter (BAF)	100	500 - 750		

Preglednica 2: Efektivna speceifična površina v odvisnosti polnitve reaktorja

Delež polnitve reaktorja, ki ga kot podatek vnesemo v program Aquifas, izračunamo kot zunanji volumen nosilcev nasproti notranjemu volumnu reaktorja. Efektivna specifična površina se preračunava kot fukcija debeline biofilma. Debelina biofilma je odvisna od:

- geometrisjkih lastnosti nosilca,
- topne KPK v reaktorju,
- hitrosti mešanja in
- strižnih sil na biofilm.

Debelina biofilma se izračunava na podlagi dveh metod. V semi-empiričnem modelu (Aquifas 3) se model preračunava kot en sam sloj, ki je bil umerjen na podlagi pilotnih študij. Pri izdaji različice Aquifas 4 se preračunava debelino biofilma na podlagi večkratnih koncentričnih slojev. Vrednosti se lahko preračunavajo za povprečni dnevni tok ali obremenitev, ki temelji na časovnih pretokih in tipičnih dnevnih pretokih (Sen, 2007).

Model je bil razvit v nizu ločenih izdajanj. Računalniški model je kodno odprtega tipa. To omogoča uporabnikom sodelovanje z razvijalci, izdelovanje specifičnih modelov po naročilu, dodajanje različnih modelov in situacij ter širjenje znanja o bioloških procesih. Sam sem sodeloval na večih videokonferencah, kjer smo spreminjali model in iskali rešitve za določene težavne situacije pri delovanju čistilne naprave.

Pomemben vpliv nosilca na učinek čiščenja

Koncept dvodimenzionalnega modeliranja je pomemben pri sistemih IFAS in MBBR reaktorjih, kjer sprememba debeline biofilma lahko vodi do zmanjšanja specifične površine znotraj samega plastičnega medija vstavljenega v MBBR reaktor (Slika 12). Ta sprememba se lahko deloma nodomesti s porastom biofilma na zunanji strani plastičnega nosilca, vendar je površina biofilma na zunanji strani nosilca bolj izpostavljena fizični obrabi. Debelina biofilma je različna pri IFAS sistemih in MBBR reaktorjih zaradi nenehnega gibanja nosilcev biomase (Slika 13).

Slika 12: Razlika med biofilmom na površini nosilca v MBBR reaktorju na levi strani in med nosilcem v IFAS sistemu

Površina biofilma na notranji strani nosilca in med krilcami na zunanji strani

Slika 13: Razlika med biofilmom na površini nosilca s krilci v MBBR reaktorju na levi strani in med nosilcom s krilci v IFAS sistemu

Efektivna specifična površina v precejalniku znaša 20 do 100 m²/m³, v MBBR reaktorju pa kar 150 do 400 m²/m³. Biološka filtra (aeriran in anoksičen) imata specifično površino 800 do $1000 \text{ m}^2/\text{m}^3$.

3.2 Navodila za uporabo programa Aquifas

Zaženemo excelovo datoteko poljubnega modela Aquifas. Znotraj programa Excel nastavimo rekalkulacijo, ki jo izvedemo po vsaki spremembi znotraj modela. Navadno funkcija kalkulacije že deluje, v kolikor nismo že prej sami spreminjali nastavitev v programu Excel. V kolikor moramo nastaviti preračunavanje na novo, izberemo v meniju orodja ukaz »opcija« in nato ukaz »kalkulacija«. Opcijo »rekalkulacija« nastavimo na izbiro uporabnika. Odkljukati je potrebno opcijo »preračunaj, preden shraniš«. Po končani vpostavitvi funkcije kalkulacija se lahko lotimo vzpostavljanja modela. Vrednosti v celicah lahko spreminjamo le za 50% ob posamezni spremembi. Nato zaženemo kalkulacijo in lahko vrednosti v celici spreminjamo znova. Za zagon preračuna pritisnemo tipko F9 na tipkovnici. Če želimo le osvežiti vrednosti na posameznem listu v excelovi datoteki, držimo tipko shift in nato

pritisnemo tipko F9 na tipkovnici. Na spodnji risbi (Slika 14) je prikazan shema delovanja modela. Označeni so listi, ki morajo biti minimalno izpolnjeni za uspešno delovanje modela.

Slika 14: Shema delovanja programa Aquifas

#S	Izberemo iz izbirnega menija ali vstavimo 0 ali 1 za preklop med možnostmi
Ю	Vstavi koncentracijo ali količino
V	Vstavi vrednost v to vrstico
oV	Možnost: Vstavi vrednost v vrstico, drugače se uporabi predvidena vrednost
	Vnesi pretok zraka za posamezno celico
	Vnesi kemično doziranje
	Specifična površina nosilca
	Volumen celice
	Koncentracija odpadnega blata
¤	Karakteristika medija

Preglednica 3: Simbolno označevanje celic potrebnih za vnos podatkov

Znotraj datoteke se premikamo po listih zapisanih v sliki (Slika 13). Pod listom grafični vmesnik so na voljo hiper povezave (linki) med posameznimi parametri. Možen je hiter pregled nad celotnim modelom. Določene celice so obarvane zeleno, kar pomeni: potrebno je vstaviti vrednost. Celice označene z rumeno barvo ponujajo že vnaprej določeno vrednost, ki jo je mogoče spremeniti. Imamo možnost med izbiro ponujene vrednosti ali izberemo lastno vrednost. Natančnejše in dolgotrajnejše meritve izvajamo, natančnejše vhodne podatke pridobimo. Prav točnost podatkov je temeljni pogoj za pravilno izdelan model čistilne naprave. Celice označene z modro barvo podajo izračun programa Aquifas. V poglavju 5 je natančneje opisan potek konfiguracije reaktorja.

3.3 Numerični pristop uporabe semi-empirične enačbe za biofilm

Bistvo učinkovite uporabe semi-empiričnih modelov je dodajanje enačb za popis oksidacije in redukcije KPK, spremembe dušika in popis produkcije blata samega biofilma. Delež čiščenja odpadne vode znotraj biofilma se povečuje, v kolikor se povečuje površina biofilma na nosilcu.

Model je zasnovan za možnost obratovanja večjih celic. Pritok in recikel je možno dodati in odstraniti iz poljubne celice. Nosilce lahko vstavimo v enega ali več celic reaktorja. Vsaka celica lahko obratuje z aeracijo ali brez kot del anaerobne, anoksične, aerobne ali ponovno ozračene cone. Za neozračene celice model računa vsebnost kisika in dušika.

Odstranjevanje hranil v biofilmu se lahko računa po dveh različnih postopkih. Eden je semiempiričen postopek in drugi se imenuje difuzijski postopek. Semi-empirične enačbe so zasnovane na podlagi ekspirementalnega merjenja pretoka snovi skozi plasti biofilma. V preglednici (Preglednica 4) je podana specifična površina biofilma za posamezen sistem čiščenja odpadne vode in zasnova smeri čiščenja odpadne vode (Sen, 2006).

Preglednica 4: Specifična površina biofilma in modeliranje precejalnikov in MBBR reaktorjev

Proces	Specifična površina	Smer pretoka in modeliranje v večih
	biofilma (m ² /m ³)	celicah
Precejalnik (kamen)	10 do 25	Vertikalno; v primeru večih celic v seriji
		tudi horizontalno
Precejalnik	20 do 50	Vertikalno; v primeru večih celic v seriji
(plastika)		tudi horizontalno
MBBRs	200 do 400	Horizontalno

Izkoristek biofilma v vsaki celici je določen s pomočjo tabel. Tako lahko natančno določimo izkoristke heterotrofov in avtotrofov pod različnimi pogoji (aerobni, anoksični), pri različnih koncentracijah raztopljenih organskih snovi in dušika v reaktorju.

3.4 Enačbe za izračun stopnje odstranitve amonijaka v programu Aquifas 3

Enačbe označene od (1) do (16) prikazujejo računanje spremembe amoniaka v verziji Aquifas 3, katero sem uporabil v računskem primeru diplomske naloge.

3.4.1 Stopnja odstranitve dušika s pomočjo nitrifikatorjev v biofilmu

Naslednja enačba (1) prikazuje odstranitev amonijevega dušika (NH₄-N) v biofilmu (kg/dan). Za celico n velja:

$$B_{N,n} = q_{m,NH4N-Nitr,bf} \frac{So_{2n}}{K_{DO,bf} + So_{2n}} \frac{S_{N_n}}{K_{N,bf} + S_{N_n}} V_n M_n \qquad ...(1)$$

kjer je:

q _{m,NH4N-Nitr,bf}	odstranitev amonijevega dušika z nitrifikacijo (mg/cm ² /dan , kg/m ² /dan),
S_{Nn} in S_{O2n}	koncentracija amonijevega dušika in raztopljenega kisika je merjena v
	reaktorju

Vn	volumen celice (m ³)
M _n	površina biofilma v posamezni celici (m ² /m ³)
K _{N,bf}	konstanta saturacije za amonijev dušik pri rasti nitrifikatorjev v biofilmu
K _{N,DO}	konstanta saturacije za raztopljen kisik pri rasti nitrifikatorjev v biofilmu

Privzeta vrednost za $K_{N,bf}$ znaša 2 mg/l amonijevaga dušika pri temperaturi 25 °C. Za poljubno temperaturo vode izračunamo konstanto po enačbi (2). Enačba se imenuje Arrheniusova enačba, kjer oznaka Θ predstavlja vrednost 1, 03 za amonijev dušik (Sen, 2006).

Privzeta vrednost za $K_{N,DO}$ znaša 4 mg/l pri temperaturi 25 °C. Za poljubno temperaturo vode izračunamo konstanto po spodnji enačbi (2). Enačba se imenuje Arrheniusova enačba, kjer oznaka Θ predstavlja vrednost 1, 00 za izračun $K_{N,DO}$.

$$K_{N,bf,T} = K_{N,bf,25}(\Theta)^{(T-25)}$$
 ...(2)

3.4.2 Stopnja nitrifikacije biofilma določena s pomočjo pilotnih naprav

Različni procesi čiščenja z aktivnim blatom, IFAS in MBBR reaktorji so bili dimenzionirani na enake obremenitve odpadne vode, enake volumne bazenov in enak povratni tok nitratov. Razlika je v nosilcih, na katere se pritrjuje biofilm v aerobni coni IFAS in MBBR reaktorja.

Rezultati pilotnih naprav so pokazali, da so nitrifikatorji v biofilmu bili zavirani zaradi visoke koncentracije KPK in ni bilo zaznanega vpliva koncentracije amonijevega dušika v celici. Empirična povezava je bila razvita iz empiričnih podatkov in z uporabo statističnega programa. Empirična raziskava je bila izvedena pod naslednjimi pogoji:

- temperatura odpadne vode = $12 \ ^{\circ}C$
- KPK > 10 mg/l
- NH4N > 3 mg/l
- Vsebnost raztopljenega kisika od 8 do 9 mg/l

$$q_{m,NH4N-Nitr,bf} = \frac{A_N K_{S,bfg,Nitr}}{K_{S,bfg,Nitr} + SCOD_{bio} - 10} \qquad \dots (3)$$

kjer je:

 $A_N = 1.8 \text{ kg}/1000 \text{m}^2/\text{dan}$ empirično pridobljen podatek $K_{S,bfg,Nitr} = 9,4 \text{ mg/l}$ konstanta saturacije za rast nitrifikatorjev v biofilmu $SCOD_{bio} =$ topna biorazgradljiva KPK koncentracija v premešani tekočini

V primeru KPK < 10 mg/l je bilo ugotovljeno, da KPK koncentracija ne vpliva na razvoj nitrifikatorjev v biofilmu. Ustrezno doseganje $q_{m,NH4N-Nitr,bf}$ je omogočeno z linearnim povečanjem biofilma nasproti amonijevega dušikom v samem pretoku reaktorja (Sen, 2006).

$$q_{m,NH4N-Nitr,bf} = (D) S_N \qquad \dots (4)$$

kjer je,

 $D = 0,47 \text{ kg*l/mg/m}^2/\text{dan}$ (empirična konstanta)

S_N je koncentracija amonijevega dušika v premešani tekočini (mg/l)

Sen in Randall (2007) sta uporabila alternativno obliko enačbe (4).

$$q_{m,NH4N-Nitr,bf} = \frac{A_N S_N}{K_{N,bfg-Nitr} + S_N} \dots (5)$$

kjer je,

 $K_{N,bfg,Nitr} = 2,1 \text{ mg/l}$; saturacijska konstanta za rast nitrifikatorjev v biofilmu

3.4.3 Odstranitev amonijevega dušika s pomočjo nitrifikatorjev v MLVSS (Mixed liquor volatile suspended solids)

Enačba (6) predstavlja porabo amonijevega dušika z nitrifikatorji v aktivnem blatu (kg/m³). Oznaka BVF_n predstavlja del volumna v reaktorju n, ki ga predstavlja biofilm in pripadajoči nosilci. Vrednost je odvisna od tipa medija in količine polnitve.

$$A_{N,n} = q_{m,NH4N-Nitr,SS} \frac{So_2}{K_{DO,SS} + So_2} \frac{SN_n}{K_{N,SS} + SN_n} V_n (1 - BVF_n) f_{Nitr} X_n \qquad \dots (6)$$

kjer je,

q_{m,NH4N-Nitr,SS} max poraba amonijevega dušika v MLVSS pri temperaturi 25 °C K_{DO,SS} konstanta saturacije za nitrifikacijo v MLVSS pri temperaturi T

f_Nitrpredstavlja delež nitrifikatorjev v MLVSSXnpredstavlja delež suhe snovi v celici n (kg VSS/m³)

Uporabnik lahko sam vstavi vrednosti koeficientov ali se odloči za predložene vrednosti. Predložena vrednost za $q_{m,NH4N-Nitr,SS}$ pri temperaturi 25 °C znaša 9,4 mg NH₄N/mg VSS/dan. Za koeficienta saturacije K_{DO,SS} znaša 1 mg/l raztopljenega kisika pri temperaturi 25 °C in za K_{N,SS} znaša 2 mg/l amonijevega dušika pri temperaturi 25 °C. Za izračun vrednosti pri poljubni temperaturi uporabimo enačbo (2). Prilagoditveni koeficient Θ znaša 1 za izračun K_{DO,SS} in v primeru računa vrednosti K_{N,SS} znaša prilagoditveni koeficient Θ 1,06 (Sen, 2006).

3.4.4 Masna bilanca amonijevega dušika v posameznem reaktorju

Koncentracija amonijevega dušika (mg/l) v posamezni celici je računana na podlagi masne bilance.

$$I_{N,n} + N_{decay,n} + N_{org-N,hydr,n} = A_{N,n} + B_{N,n} + C_{N,n} + D_{N,n} + E_{N,n} \qquad ...(7)$$

kjer je:

I _{N,n}	količina masnega pretoka amonijevega dušika v celico n (kg/dan),		
N _{decay,n}	količina amonijevega dušika zaradi razkroja usedlih delcev v celici n		
	(kg/dan),		
Norg-N,hydr,n	količina organskega dušika dobljenega s pomočjo hidrolize (kg/dan),		
$A_{N,n}$ in $B_{N,n}$	poraba amonijevega dušika v biofilmu in aktivnem blatu, računano po		
	enačbi (1) in (6) (kg/dan).		
$C_{N,n}$ in $D_{N,n}$	poraba amonijevega dušika v celici n zaradi produkcije heterotrofne biomase		
	(kg/dan).		
E _{N,n}	količina prostega amonijevega dušika v celici n (kg/dan)		
C _{N,n}	je poraba amonijevega dušika s strani biomase v MLVSS reaktorju z uporabo		
	raztopljenega kisika in nitrifikacije v celici n.		

$$C_{N,n} (kg/d) = \{ [COD_{u, aer, SS,n}] [Y_{AH, aer, SS}] + [COD_{u, anx, SS,n}] [Y_{AH, anxSS}] \} f_N \qquad \dots (8)$$

kjer je:

f_n delež dušika v biomasi

COD_{u,aer,SS,n} in COD_{u,anx,SS,n} sta izkoriščena v MLVSS pod aerobnimi in anaoksičnim pogoji v celici n.

 $Y_{AH,SS}$ in $Y_{AH,BF}$ pomenita donos biomase za heterotrofe v aktivnem blatu in v biofilmu.

 $D_{N,n}$ (kg/d) predstavlja porabo amonijevega dušika zaradi rasti heterotrofov v biofilmu v celici n.

$$D_{N,n} = [COD_{u, bf, n}][Y_{AH,BF}] f_N$$
 ...(9)

N_{decay, n} predstavlja dušik izpuščen iz biomase v MLVSS kot rezultat razpada. Ko je vsebnost raztopljenega kisika čez mejo, predstavlja aerobna stanja enačba:

$$N_{\text{decay}, n} (\text{kg/day}) = (f_N) (k_{\text{dH}, \text{aerT}} X_n V_n) (1-\text{BVF}_n) \qquad \dots (10)$$

N_{decay,n} ni zajet v vredosti amonijevega dušika. Razmerje temelji na podlagi produkcije suhe snovi v rekatorju s poživljenim blatom. Produkcija suhe snovi (Cn) je izmerjena na podlagi razpada biomase. N_{org-N,hydr,n} je količina nesimiliranega organskega dušika, ki hidrogeniran v celici n. Računamo po naslednji enačbi (enote so kg/dan):

$$N_{\text{org-N,hydr,n}} = (I_{\text{PorgN}} + I_{\text{SorgN}} - E_{\text{PorgN}} - E_{\text{SorgN}})_n \qquad \dots (11)$$

Stopnjo hidrolize računamo na podlagi Monodovih enačb. V primeru popolnoma premešanega reaktorja predstavlja maksimalna hidroliza razmerje neasimiliranega dela organskega dušika (q_{m,hydr,EA,PorgN,SS}), ki je izražen v kg organskega dušika na dan. Konstanta saturacije (K_{hydr,EA,PorgN,SS}) je izražena v mg/l organskega dušika (Sen, 2006).

Oznaka EA predstavlja v nadaljevanju aerobno, anoksično ali anaerobno stanje elektronskega akceptorja, na podlagi količine raztopljenega kisika, količine nitrata in nitrita, ki predstavljata

aerobno in anoksično stanje. Maksimalna stopnja hidrolize v primeru biofilma za organski dušik $(q_{m,hydr,EA,PorgN,bf})$, ki je izražena s kg organskega dušika/dan/1000 m³/površino biofilma. Konstanta saturacije (K_{hydr,EA,PorgN,bf}) je izražena v mg/l organskega dušika. Iztok organskega dušika (E_{PorgN}) računamo iz pritoka organskega dušika (I_{PorgN}) in hidrolizo organskega dušika s pomočjo razpršene biomase in biofilma. To je prikazano z enačbami od (12) do (15):

$$I_{PorgN,n} = E_{PorgN,n} + Porg N_{hydr,SS,n} + Porg N_{hydr,bf,n} \qquad \dots (12)$$

$$\operatorname{Porg} N_{hydr,SS,n} = q_{m,hydr,EA,PorgN,SS} \frac{S_{PorgN,n}}{K_{hydr,EA,PorgN,SS} + S_{PorgN,n}} \quad V_n(1 - BVF_n) X_n \qquad \dots (13)$$

$$\operatorname{Porg} N_{hydr,bf,n} = q_{m,hydr,EA,PorgN,bf} \frac{S_{PorgN,n}}{K_{hydr,EA,PorgN,bf} + S_{PorgN,n}} \quad V_n M_n \qquad \dots (14)$$

$$E_{PorgN} = (S_{PorgN})(Q_{eff,n}) \qquad \dots (15)$$

kjer je:

 S_{PorgN} koncentracija dela organskega dušika v iztoku iz celice n Q _{eff,n} iztok iz celice n.

Iz organskega dušika dobimo s hidrolizo topen organski dušik. Topen organski dušik se spremeni v amonijev dušik. Iztok raztopljenega organskega dušika (E _{SorgN}) v celici je računan kot sledi v enačbi (16) (enote so v kg/dan):

$$I_{SorgN} + P_{org} N_{hydr,SS,n} + P_{org} N_{hydr,bf,n} = E_{SorgN} + S_{org} N_{hydr,SS,n} + S_{org} N_{hydr,bf,n} \qquad ...(16)$$

Enačbe za določevanje topnega organskega dušika, hidroliziranega s pomočjo biofilma in razpršene biomase ($P_{org} N_{hydr,SS,n} + P_{org} N_{hydr,bf,n}$) so strukturirane v enačbah od (12) do (15). Maksimalna stopnja hidrolize za topen organski dušik je uporabljena v enačbah (13) in (14). Pozornost je potrebno posvetiti določanju pravilne stopnje hidrolize v biofilmu. Neskladja v določanju stopnje hidrolize lahko vodijo do velikih razlik v iztoku. V primeru hladnega vremena je razlika med modelom in realno napravo večja, ko obratuje kot MBBR reaktor (Sen, 2006).

Privzeti vrednosti $q_{m,hydr,aer}$, $P_{org}N$, SS in $q_{m,hydr,aer}$, $S_{org}N$, b_f sta pri temperaturi 25 °C nastavljeni na 20% maksimalne količine substrata. Na ta način pridemo do vrednosti 0,20 na dan in 0,46 kg/dan/1000 m². Vrednosti pod anoksičnimi pogoji znašajo 0,14 in 0,30 kg/dan/1000 m². V primeru anaerobnih pogojih znašajo vrednosti 50 % vrednosti manj kot pri anoksičnih pogojih (Sen, 2006).

4 RAČUNSKI PRIMER PRERAČUNA MBBR REAKTORJA

4.1 Uvod

Uporabil sem računalniški model Aquifas 3, ki lahko simulira konvencionalne procese z aktivnim blatom, membranske bioreaktorje, IFAS (integrated fixed film system), BAF (Biological aerated filter), MBR (membrane biofilm reactor) in MBBR (moving bed biofilm reactor). Model operira na podlagi različne količine biofilma prisotne v mediju in na podlagi MLSS (Mixed liquor suspended solids). MBBR reaktor izvedemo iz procesa s povratnim blatom. Če se efektivna specifična površina povečuje v tej meri, da ne moremo govoriti več o premikajočih nosilcih, imenujemo proces BAF (Biological aerated filter) proces.

Za preračun sem izbral in pridobil podatke čistilne naprave v domačem kraju Rače pri Mariboru. Obstoječa čistilna naprava je bila zgrajena leta 1978 in deluje na podlagi tehnologije podaljšane aeracije. Nazivna zmogljivost čistilne naprave znaša 5000 PE. Potrebna je posodobitev obstoječe tehnologije, saj ne zadostuje povečani obremenitvi industrije in porastu prebivalstva v občini. S pomočjo programa Aquifas 3 bo pokazana sprememba na iztoku, v kolikor se izbere tehnologija MBBR in nosilce podjetja Kaldnes. Nosilci Kaldnes so bili izbrani zaradi dostopnih podatkov o specifični površini posameznega nosilca in zaradi razširjenosti uporabe na področju Evrope.

4.2 Vhodni podatki

Monitoring odpadne vode je izvedel Zavod za zdravstveno varstvo Maribor. Meritve so se izvajale leta 2007 in sicer meseca februarja, aprila, avgusta in oktobra. Dotok na čistilno napravo je specifičen zaradi večjih obratov za predelavo mesa, kemične industrije in nestalne količine dotoka. V času jutranjega intezivnega obratovanja klavnice, doteka na čistilno napravo tudi do dvakrat presežena obremenitev povprečne komunalne odpadne vode. Vrednost KPK znaša tudi čez 1400 mg/l. Za odpadno vodo iz klavnic je značilna tudi visoka

koncentracija celotnega dušika in maščob, kljub temu vrednosti merjenih parametrov iz klavnice niso presegali mejnih vrednosti za izpust v kanalizacijo. Parametri splošne obremenitve (KPK, BPK₅, celotni dušik in fosfor) za iztok v kanalizacijo niso omejeni. Za odvajanje odpadnih vod iz klavnic v javno kanaliazacijo sta po predpisih RS omejene le neraztopljene snovi, maščobe in parameter AOX, ki je merilo za uporabo čistil na osnovi klora.

Pri vseh štirih opravljenih meritvah v letu 2007 se pojavljajo izrazito različna parametra KPK in BPK₅. Povprečna vrednost KPK znaša 600 mg/l in BPK₅ 350 mg/l. Ravno nihanje v biološki in tudi v hidravlični obremenitvi je eden izmed zelo tehtnih razlogov za uporabo tehnologije MBBR, ki obremenitvene šoke dobro prenaša. Kot vhodne podatke sem izbral obratovalni monitoring izveden avgusta 2007, ki nakazuje na vtoku na čistilno napravo zmerno obremenjeno odpadno vodo. V preglednici (Preglednica 5) je prikazan povzetek vhodnih podatkov, ki so uporabljeni v preračunu programa Aquifas 3. Merjeni so bili parametri: neraztopljene snovi, amonijev dušik, kemijska potreba po kisiku (KPK), biološka potreba po kisiku (BPK₅), temperatura in pH. Obratovalni monitoring je priložen v prilogi A.

Preglednica 5: Izmerjeni parametri na vtoku na čistilno napravo Rače (Občina Rače-Fram, 2007)

Parametri	Vrednosti	Enote
Q	1440	m ³ /dan
Т	15	°C
рН	7,1	
BPK ₅	270	mg/L
КРК	470	mg/L
Neraztopljene		
snovi	170	mg/L
NH_4N	23	mg/L

»se nadaljuje...«

»...nadaljevanje«

Skupni N	33	mg/L
Skupni P	4	mg/L
Raztopljen kisik	7,1	mg/L

Najprej določimo izbrano konfiguracijo in vrsto procesa, za katerega smo se odločili. Obstajata dve vrsti simulacij, ki jih lahko poženemo. Izbrati je mogoče med simulacijo na podlagi povprečnega dnevnega urnega pretoka (steady steate). Simulacijo imenujemo tudi statično stanje, saj se urni pretok tekom dneva ne spreminja. V kolikor imamo na razpolago poznane urne pretoke odpadne vode na čistilno napravo in želimo pridobiti natančne parametre na iztoku, izberemo dinamično simulacijo (dynamic simulation). V diplomski nalogi sem izbral statično simulacijo zaradi pridobljenih podatkov, ki so bili v vseh štirih meritvah zelo različni. Z uporabo dinamične simulacije ne bi pridobili na točnosti končnega rezultata, zato je bila izbrana statična simulacija.

V nadaljevanju sestavljanja modela je mogoč natančen popis posameznih parametrov odpadne vode (BPK₅, KPK, vsebnost dušika, vsebnost fosforja, temperaturo, pH) kot povprečne vrednosti ali kot urne vrednosti. Pri sestavljanju modela sem se omejil le na biološki reaktor. Program Aquifas 3 omogoča še natančno določitev predčiščenja, predhodnega in naknadnega usedalnika in določevanja terciarnega čiščenja.

Biološki del čiščenja odpadne vode se na čistilni napravi Rače trenutno izvaja na način podaljšane aeracije. Biološki reaktor je krožne oblike z volumnom 500 m³. Za uspešno rekonsktrukcijo čistilne naprave je potrebno biološki reaktor rezdeliti na šest ločenih celic. Z različnimi zaporedji, številom celic, volumnom posameznih celic in samimi pogoji v celicah ustvarjamo različne pogoje za čiščenje odpadne vode. Konfiguracija zasnove biološkega reaktorja je vidna na spodnji sliki, kjer so vidna tudi posamezna zaporedja celic (Slika 15). Za samo konfiguracijo reaktorja imamo na razpolago več možnosti s katerimi lahko operiramo:

- povratek aktivnega blata,
- količina povratka odpadne vode,
- povratek nutrientov,

- spreminjanje deleža polnitve nosilcev biomese,
- dodajanje ogljika.

Slika 15: Zasnova čistilne naprave v programu Aquifas 3

4.3 Parametri reaktorja in konfiguracija nosilcev

Po končani določitvi parametrov vhodnih podatkov je potrebno razdeliti volumen reaktorja. V primeru nadgradnje obstoječe čistilne naprave imamo poznan volumen, na podlagi katerega določamo nosilce biomase, količino njihove polnitve, količino vpihovanja kisika in potrebne zadrževalne čase. Posamezne celice imajo različne deleže volumnov (Preglednica 6). Volumen reaktorja in deleže polnitve lahko poljubno spreminjamo. Priporočljiva je sprememba volumna do 50% pred zagnano rekalkulacijo programa. To velja za vse spremembe podatkov, ki so predpostavljene ali jih sami vnašamo v program.

VOLUMEN CELICE	Anoksično	Anoksično	Aerobno	Aerobno	Aerobno
Delež volumna v celici(%)	12,50	12,50	25,00	25,00	25,00
Volumen v celici (m ³)	62,5	62,5	125,0	125,0	125,0
Skupni volumen (m ³)					500

Preglednica 6: Volumen reaktorja in posameznih celic reaktorja

Pretok se poda v m³/dan. Zadrževalni čas v reaktorju se tudi poda v dnevih in sicer za 12 ur se vstavi vrednost 0,5 dneva. Na podlagi volumna reaktorja in predvidenega dnevnega dotoka določim zadrževalni čas (Preglednica 7). Med spreminjanjem modela je priporočljivo pognati preračun v programskem okolju Excel. Med posameznim izvedenim preračunom je mogoče spreminjati zadrževalni čase v reaktorju in opazovati spremembe v kvaliteti iztoka oziroma stopnji očiščenega amonijaka, BPK ali fosforja. Želimo doseči čim krajši zadrževalni čas, kar ima za posledico manjši potreben volumen biološkega reaktorja. V primeru izbire dinamičnega ali statičnega modela izberemo povprečno vrednost zadrževalnega časa tekom dneva ali vrednost zadrževalnega časa na vsako uro. Enako velja v primeru določevanja temperature odpadne vode.

Preglednica 7: Pretok na čistilno, temperatura odpadne vode in zadrževalni čas v reaktorju (Program Aquifas 3, 2008)

Pretok (m ³ /dan)	1440
Zadrževalni čas (dan)	0,35
Temperatura odpadne vode (⁰ C)	15,00

Zelo važna je efektivna specifična površina nosilca, na katerega se pritrdi biomasa. Le ta se za posamezne nosilce razlikuje. Pomembnost efektivne specifične površine in razlika v geometriji nosilcev je opisana v drugem poglavju. V poglavju 4.4 bodo prikazani rezultati vpliva spremembe specifične površine biofilma in deleža polnitve reaktorja z nosilci biomase na učinek čiščenja odpadne vode. V preglednici (Preglednica 8) sta navedeni specifični

površini za različna nosilca biomase, ki bosta uporabljena v preračunu modela. Zelo važen faktor je tudi temperatura okolice in temperatura surove odpadne vode. S spreminjanjem večih parametrov naenkrat ne dobimo jasnega vpliva željenega parametra na kvaliteto končnega iztoka. Iz tega razloga sem se odločil opazovati spremembo efektivne specifične površine in deleža polnitve.

Preglednica 8: Specifična površina biofilma in delež polnitve reaktorja (Program Aquifas 3, 2008)

Efektivna specifična površina nosilca biomase K3 (m ² /m ³)	500
Efektivna specifična površina nosilca biomase K1 (m ² /m ³)	325
Delež polnitve reaktorja (%)	0,65

4.4 Določitev stopnje aearacije in pozicioniranje puhal za vpihovanje zraka

Za uspešno delovanje čistilne naprave je potrebno določiti količino vpihovanja zraka v posamezno celico biološkega reaktorja. Določitev količine vpihovanega zraka predstavlja ključno fazo vzpostavitve stabilnega sistema. Če prihaja do pomanjkanja razpoložljivega raztopljenega kisika, aerobni mikroorganizmi ne morejo delovati optimalno. Stopnja raztopljenega kisika in potrebna aeracija posamezne celice je prikazana v preglednici (Preglednica 9). V kolikor podatek o stopnji raztopljenega kisika ni na voljo, ga je potrebno predvideti. Ko vstavimo vrednost v program Aquifas 3, je potrebno model pognati. Program Aquifas 3 nas opozori in predlaga zmanjšanje oziroma povečanje stopnje raztopljenega kisika v posamezni celici, da se lahko zagotovi stabilnost sistema.

Preglednica 9: Stopnja raztopljenega kisika v posameznih celicah (Program Aquifas 3, 2008)

	Pre Anx 1	Pre Anx 2	Aerobno 1	Aerobno 2	Aerobno 3
Stopnja raztopljenega kisika					
(mg/l)	0,25	0,2	3	4	5
Potrebna aeracija posamezne celice (kg/d)	0,0	0,0	180,0	159,8	103,3

Pomemben dejavnik pri vzpostavitvi ustrezne aeracije je vpihovanje ustrezno velikih mehurčkov zraka in pravilno pozicioniranje puhala v biološkem reaktorju. Možen je preračun za pozicioniranje difuzorjev za ozračevanje. Program Aquifas 3 natančno izračuna količino vpihovanja, velikost potrebnih mehurčkov vpihovanja in globina inštalacije vpihovalca zraka (difuzorja). Ta način kalkulacije sem izbral in rezultati so vidni v preglednici (Preglednica 10). Lahko se odločimo, da sami nastavimo globino vpihovanja. Tako dobimo odvisnost kvalitete iztoka iz biološkega reaktorja nasproti globini inštalacije difuzorja.

Preglednica 10: Količina vpihovanega zraka v posamezno celico (Program Aquifas 3, 2008)

	Pre Anx 1	Pre Anx 2	Aerobno 1	Aerobno 2	Aerobno 3
Globina reaktorja (m)	3,60	3,60	3,60	3,60	3,60
Višina izdelave difuzorja nad	0,20	0,20	0,20	0,20	0,20
dnom reaktorja (m)					
Pretok zraka (m3/min)	0,0	0,0	7,8	7,2	5,0

V posamezni celici je možno aktivirati ali deaktivirati aeracijo. V prikazanem primeru čistilne naprave Rače je aktiviranih le 5 celic od skupaj možnih 12 celic, s kateri lahko operiramo. Ostale celice so deaktivirane. Več kot imamo vključenih celic, bolj kompleksen je model čistilne naprave. S pomočjo programa Aqufas 3 sem tudi določil predvideno priključno moč puhala za zagotavljanje stabilni pogojev v reaktorju. Predvidena moč puhala je prikazana v preglednici (Preglednica 11). Priključna moč je določena na podlagi seštevka zahtevane aeracije v posamezni celici.

Preglednica 11: Potrebna izhodna moč inštaliranega puhala (Program Aquifas 3, 2008)

Potreben zračni pritisk puhala (bar)	1,104
Potrebna izhodna moč puhala (m ³ /min/KW m)	0,84
Potrebna aeracija posamezne celice (kg/dan)	443,1

Majhne plastične kroglice različnih geometrijskih karektaristik nudijo veliko površine za razrast biomase. S pričetkom proizvodnje polietilenskih nosilcev z večjim premerom je postal koncept premikajočih nosilcev s pritrjenim biofilmom (MBBR) široko uporaben proces pri nadgradnji tako industrijskih kot komunalnih čistilnih naprav. Zagotavljanje primerne debeline biofilma je mogoče s pomočjo vpihovanja zraka (Preglednica 12). Nosilci trkajo med sabo in tako posledično izgubljajo biofilm, ki se je prekomerno razrasel po površini nosilca in posledično preprečuje zamašitev nosilca.

Preglednica 12: Količina vpihovanja kisika za potrebe vzdrževanja primerne količine biofilma (Dipankar Sen, 2008)

Minimalno povprečno vpihovanje zraka za mešanje		
medija	25	m ³ /min/1000m ³
Minimalno povprečno vpihovanje zraka za		
preprečevanje prekomerne debeline biofilma	50	m ³ /min/1000m ³
Maksimalno povprečno vpihovanje zraka za		
preprečevanje prekomernega luščenja biofilma	200	m ³ /min/1000m ³

4.5 Rezultati

Izvedena bosta dva preračuna čistilne naprave MBBR, ki se bosta razlikovala po nosilcih biomase vstavljenih v reaktor. Primerjal bom razliko med kvaliteto čiščenja odpadne vode z K3 in K1 nosilcem biomase podjetja Kaldnes iz Norveške (Slika 16). Razlika med nosilcema se kaže v efektivni specifični površini. Izračunane parametre na izhodu iz biološkega reaktorja bom primerjal s podatki monitoringa izvedenega avgusta 2007 na iztoku čistilne naprave Rače pri Mariboru. Monitoring izveden na vtoku in iztoku iz čistilne naprave Rače, merjen avgusta 2007, je priložen pod prilogo A. Na ta način bom primerjal tehnologijo čiščenja odpadne vode s podaljšano aeracijo in novejšo MBBR tehnologijo.

Slika 16: Nosilec biomase Kaldnes K3 in K1 (<u>www.koienterprise.com</u>, 20.10.2007)

4.5.1 Kvaliteta iztoka pri efektivni specifični površini nosilca 325 m2/m3

Rezultati so v programu Aquifas 3 prikazani tabelarično in grafično. Natančneje bom predstavil vrednosti KPK, vsebnost skupnega dušika in amonija. V uvodu sem predstavil vrednosti, ki jih je potrebno dosegati pri izpustih iz čistilne naprave. Najstrožja merila so postavljena za velike čistilne naprave, kar je razumljivo, saj izpuščajo velike količine

obdelane odpadne vode nazaj v naravo. V Sloveniji velike čistilne naprave praviloma odstranjujejo dušik iz odpadne vode.

Prednost tehnologije čiščenja odpadne vode MBBR je v veliki meri konstantna površina biofilma tekom celotnega postopka čiščenja. Slaba stran pritrjenega biofilma na nosilce je zadrževanje nosilcev biomse znotraj reaktorja. Potrebno je preprečiti prehajanje nosilcev v naslednje faze čiščenja. Manjši kot so nosilci, težje jih je zadržati v reaktorju in pri tem preprečiti hidravlično izgubo zaradi zastajanja oziroma mašenja iztoka iz reaktorja. Potrebno je najti kompromis med velikostjo, obliko in specifično povšino nosilca. Volumen reaktorja je razdeljen na pet različnih celic (Slika 17). Skupen volumen znaša 500 m³, vendar je razdeljen na posamezne celice v želji doseganja boljšega učinka čiščenja.

Slika 17: Razmerje med volumnom reaktorja in efektivno specifično površino nosilca K1 biofilma

Na spodnjih slikah so grafično prikazane spremembe posameznih parametrov v biološkem reaktorju. Prikazano je odstranjevanje KPK, amonijevega dušika in skupnega dušika v posameznih celicah reaktorja. Narejena je primerjava s procesom z razpršeno biomaso, kjer se

vidi višja učinkovitost čiščenja sistema MBBR. Prav tako se je MBBR pokazal bolj stabilen v praksi pri posameznih industrijskih šokih (čistilna naprava Domžale).

Slika 18: Profil KPK v MBBR reaktorju

Slika 19: Odstranitev KPK v biofilmu in v sistemu z razpršeno biomaso

Na sliki (Slika 19) je razvidna razlika med uporabo postopka MBBR in postopka z razpršeno biomaso. Bistveno je povišanje odstranitve KPK v prvi aerobni coni MBBR reaktorja (biofilm). Doseže vrednost do 200 kg/dan in se nato postopoma niža, kjer doseže vrednost odstranitve KPK 100 kg/dan v tretji aerobni coni. Graf odstranitve KPK pri razpršeni biomasi ima najvišjo vrednost v prvem aerobnem reaktorju, vendar znaša le 25 kg/dan. Vrednost nato počasi pada, kot pri uporabi postopka s pritrjeno biomaso.

Slika 20: Odstranitev NH4N in skupnega N v MBBR reaktorju

Slika 21: Odstranitev NH4N v biofilmu in v sistemu z razpršeno biomaso

Podobno kot pri odstranitvi KPK je tudi pri odstranitvi amonijevega dušika. Prikazana sta grafa odstranitve amonijevega dušika po posameznih celicah z uporabo nosilcev biomase (MBBR) in uporabo razpršene biomase (podaljšana aeracija) (Slika 21). Najvišja stopnja odstranitve se pri obeh postopkih odvija v prvi aerobni celici. Pri postopku čiščenja odpadne vode z uporabo nosilcev pritrjene biomase, doseže stopnja odstranitve amonijevega dušika večkrat višjo vrednost, kot pri postopkih z razpršeno biomaso.

Mejne vrednosti parametrov na iztoku iz čistilne naprave so določene z Uredbo o emisiji snovi pri odvajanju odpadne vode iz komunalnih čistilnih naprav in jih je potrebno spoštovati. Predpisane dovoljene vrednosti parametrov na iztoku so različne glede na velikost čistilne naprave. V preglednici (Preglednica 13) so prikazane mejne vrednosti za koncentracijo neraztopljenih snovi, amonijevega in celotnega dušika, KPK in BPK.

Preglednica 13: Mejne vrednosti za koncentracijo neraztopljenih snovi, amonijevega in celotnega dušika, KPK ter BPK₅ (Uradni list RS, št. 45/07)

Parameter	lzražen kot	Enota	Zmogljivost čistilne naprave, izražena v PE		
			>= 2.000 < 10.000	>= 10.000 < 100.000	>=100.000
Neraztopljene snovi	-	mg/l	60	35	35
Amonijev dušik	N	mg/l	10**	10**	5**
Celotni dušik*	N	mg/l	25**	25**	20**
KPK	O ₂	mg/l	125	110	100
BPK ₅	O ₂	mg/l	25	20	20

* Celotni dušik je vsota dušika po Kjeldalhu (N-organski + N-NH₄), nitratnega dušika (N-NO₃) in nitritnega dušika (N-NO₂).

** Mejna vrednost za amonijev in celotni dušik se uporablja pri temperaturi odpadne vode 12 °C in več na iztoku aeracijskega bazena.

V spodnji preglednici (Preglednica 14) je prikazana mejna vrednost, učinek čiščenja celotnega fosforja in celotnega dušika. Učinek čiščenja odpadne vode je pomemben podatek za upravljalca čistilne naprave. Na podlagi učinka čiščenja se namreč obračunava cena čiščenja odpadne vode.

Preglednica 14: Mejne vrednosti za koncentracijo amonijevega dušika ter za koncentracijo in učinek čiščenja celotnega dušika in celotnega fosforja (Uradni list RS, št. 45/07).

Parameter	lzražen kot	Enota	Zmogljivost čistilne naprave, izražena v PE		
			>= 2.000 < 10.000	>= 10.000 < 100.000	>=100.000
Amonijev dušik	N	mg/l	10**	10**	5**
Celotni dušik*	N	mg/l	15**	15**	10**
Učinek čiščenja celotnega dušika		%	70	70	80
Celotni fosfor	Р	mg/l	2	2	1
Učinek čiščenja celotnega fosforja		%	80	80	80

Vrednosti parametrov na iztoku iz biološkega reaktorja (program Aquifas 3) so primerjani z merjenimi parametri na iztoku iz čistilne naprave (Preglednica 15). Monitoring je bil opravljen avgusta 2007. Vhodni podatki za preračun s pomočjo programa Aquifas so vzeti iz opravljenega monitoringa avgusta 2007, ki je priložen v prilogi A. Parametri na iztoku po nadgradnji z MBBR so v vseh postavkah razen v fosforju ugodnejši, kot obstoječ sistem čiščenja s podaljšano aeracijo. Upoštevati moramo, da je bila odpadna voda znotraj programa Aquifas 3 obdelovana na nivoju sekundarnega čiščenja.

Preglednica 15: Primerjava med sedanjim stanjem iztoka iz čistilne naprave in iztokom po nadgradnji čistilne naprave z MBBR (K1)

	Iztok iz obstoječe	Iztok iz reaktorja nadgrajenega z MBBR
	ČN	(nosilec K1)
Pretok (m ₃ /dan)	1440	1440
Neraztopljene snovi (mg/l)	70	5
Celotni dušik (mg/l)	2,4	1,9
Amonijev dušik (mg/l)	11	3
Celotni fosfor (mg/l)	2,4	4,2
KPK (mg/l)	210	38
BPK ₅ (mg/l)	50	18

4.5.2 Kvaliteta iztoka pri efektivni specifični površini nosilca 500 m2/m3

Za nadaljni izračun sem izbral nosilec biomase K3 in tako povečal efektivno specifično površino biofilma iz $325 \text{ m}^2/\text{m}^3$ na $500 \text{ m}^2/\text{m}^3$. Na ta način sem povečal količino biomase v reaktorju. Predpisane vrednosti efektivne specifične površine nosilca podaja proizvajalec. Norveško podjetje Kaldnes je vodilni proizvajalec nosilcev biomase K1 in K3 v Evropi (Slika 15).

Na spodnjem grafu (Slika 22) je prikazana povečana efektivna specifična površina biofilma. Zaradi povečane količine se predvideva izboljšana kvaliteta čiščenja odpadne vode. Na enak način se lahko pričakuje tudi krajši zadrževalni čas za želeno doseganje enake kvalitete čiščenja odpadne vode.

Slika 22: Volumen reaktorja in efektivna specifična površina nosilca K3

Slika 23: Potek KPK po posameznih posameznih celicah

Slika 24: Odstranitev KPK v biofilmu in v sistemu z razpršeno biomaso

Slika 25: Odstranitev NH₄N in skupnega N v MBBR reaktorju

Slika 26: Odstranitev NH4N v biofilmu in v sistemu z razpršeno biomaso

Na prikazanih grafih (Slika 24 in Slika 26) je opazen podoben trend spreminjanja parametrov, kot pri nosilcih K1. Glavna razlika je v povečani količini odstranitve KPK in amonijevega dušika. Na spodnji tabeli (Preglednica 16) so prikazane povprečne vrednosti na iztoku, ki so vidno boljše oziroma bolj ugodne.

Preglednica 16: Povprečne vrednosti parametrov na iztoku iz obstoječe ČN in za MBBR nosilce s specifično površino $500 \text{ m}^2/\text{m}^3$

		Iztok iz reaktorja
	Iztok iz obstoječe	nadgrajenega z MBBR
	ČN	(nosilec K3)
Pretok (m ₃ /dan)	1440	1440
Neraztopljene snovi		
(mg/l)	70	5
Celotni dušik (mg/l)	2,4	1,65

»se nadaljuje...«

Amonijev dušik (mg/l)	11	3
Celotni fosfor (mg/l)	2,4	4,2
KPK (mg/l)	210	27
BPK ₅ (mg/l)	50	10,12

»...nadaljevanje«

S povečanjem efektivne specifične površine biofilma smo dosegli izboljšane vrednosti KPK, skupnega dušika in amonijevega dušika na iztoku. Potrebno je poudariti, da je nujna usklajenost med velikostjo nosilcev in velikostjo bazena. V zelo majhen bazen ne moremo dodajati zelo velikih nosilcev, saj ne bi dosegli željenega učinka. Potrebno je tudi paziti na zamašitev ali delno zamašitev iztoka, saj bi to bistveno spremenilo hidravlične razmere v reaktorju.

V spodnji tabeli (Preglednica 17) primerjamo vrednosti merjenih parametrov na iztoku iz čistilne naprave Rače z rezultati dobljenimi s pomočjo programa Aquifas 3. Rezultati so predstavljeni za nosilec biomase K1 in K3. Vse vstavljene vrednosti v modelu so ostale nespremenjene. Povečana je bila le efektivna specifična površina biofilma. Iz tega sledi, da je pravilna izbira nosilcev biomase eden izmed ključnih dejavnikov v uspešnem čiščenju odpadne vode z uporabo MBBR reaktorja. Na uspešnost čiščenja vpliva še veliko dejavnikov: vstopne vrednosti odpadne vode, vpihovanje zraka, premešanje nosilcev in celovita izgradnja čistilne naprave (predčiščenje, primarni in naknadni usedalnik, terciarno čiščenje).

Preglednica 17: Primerjava med sedanjim iztokom in nadgradnjo z MBBR in uporabo nosilcev K1 (efektivna specifična površina 325 m^2/m^3) in K3 (efektivna specifična površina 500 m^2/m^3).

	Iztok iz	MBBR (nosilec	MBBR (nosilec
	obstoječe ČN	K 1)	K3)
Pretok (m ₃ /dan)	1440	1440	1440
Neraztopljene snovi (mg/l)	70	5	5

»se nadaljuje...«

Celotni dušik (mg/l)	2,4	1,9	1,65
Amonijev dušik (mg/l)	11	3	3
Celotni fosfor (mg/l)	2,4	4,2	4,2
KPK (mg/l)	210	38	27
BPK ₅ (mg/l)	50	18	10,12

»...nadaljevanje«

Na podlagi narejenih izračunov je razvidno, da je boljši učinek čiščenja bil dosežen s pomočjo nosilcev večje efektivne specifične površine (K3). To je pričakovan rezultat. Nepričakovana je velika razlika med kvaliteto čiščenja odpadne vode na obstoječi čistilni napravi Rače, ki uporablja tehnologijo čiščenja podaljšane aeracije za biološki del čiščenja odpadne vode in morebitno potencialno nadgradnjo čistilne naprave z MBBR tehnologijo.

Razlog za nižje vrednosti parametrov KPK in BPK₅ gre iskati v novejši tehnologiji čiščenja. Tudi vrednost amonijevega dušika je precej nižja od dovoljenih in trenutnega izpusta na čistilni napravi Rače. Reaktorji s premikajočim slojem (MBBR) so bolj učinkoviti v delovanju kot reaktorji z razpršeno biomaso. Ti inovativni procesi se lahko uspešno vključijo v obstoječe sisteme čistilnih naprav za izboljšanje učinkovitosti čiščenja brez večjih gradbenih posegov. Slaba stran procesa z uporabo biofilma je omejitev difuzije substrata in kisika skozi sloje biofilma, ki se zmanjšuje z večanjem debeline biofilma.

5 ZAKLJUČEK

Program Aquifas se je pokazal primernega pri programih, za uporabo preračuna čistilne naprave, ki uporablja MBBR tehnologijo. Pozitivno je hitro spreminjanje in vnašanje vhodnih parametrov v računalniški model biološkega reaktorja. Možno je dimenzioniranje kompletne čistilne naprave skupaj s predčiščenjem, naknadnim usedalnikom in terciarnim čiščenjem. Težava se pojavi pri stabilizaciji računalniškega modela. Potrebno je veliko popravkov in poznavanja bioloških procesov, da se lahko vzpostavi stabilno stanje, v katerem biološki reaktor deluje optimalno. Prav tako je veliko možnosti pri modeliranju biološkega reaktorja, saj ga lahko razdelimo na 12 celic in tako s pomočjo računalnika preizkušamo variantne rešitve pred postavitvijo pilotne naprave ali komunalne čistilne naprave za posamezno naselje.

Velika prednost programa Aquifas je odprta koda programa, kjer uporabnik lahko pregleduje enačbe in jih po svojih potrebah dopolnjuje. Največja prednost je natančnost izračuna, saj edini razdeli biofilm na 12 slojev in tako poveča natančnost preračuna modela biološkega reaktorja. Program Aquifas je trenutno na voljo brezplačno v primerjavi s programom GPS-X, ki je zelo drag. Na voljo so videokonference preko spleta, na katerih se je mogoče dodatno izobraževati o programu.

Program Aquifas je v Sloveniji nov program, ki še ni bil uporabljen za preračunavanje čistilnih naprav. To je razvidno iz baze uporabnikov in sodelovanja v internetnih tečajih uporabe programa Aquifas (videokonference). Potrebnih bo še veliko izračunanih modelov čistilnih naprav (v Sloveniji) s pomočjo programa Aquifas, da se bo program izkazal za uporabnega. Zanimiva bi bila primerjava med različnimi računalniškimi programi za dimenzioniranje čistilnih naprav, za primer iste čistilne naprave. Uporaba MBBR reaktorjev je v zadnjem letu v Sloveniji presegla več novih projektiranih čistilnih naprav. Povečalo se je število ponudnikov nosilcev biomase, ki jih uporabljajomo v MBBR reaktorjih. Na prvih dveh mestih sta podjetji Kaldnes iz Norveške in Kuraray iz Japonske.

VIRI

Nienow, A. W. Bioreaktor & Bioprocess fluid dynamics. 1993. London, IWA:367-371.

Panjan, J. 1997. Osnove čiščenja voda. Ljubljana, Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo: 105-156.

Panjan, J. 2001. Čiščenje odpadnih voda. Ljubljana, Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo: 48-110.

Panjan, J. 2004. Osnove zaščite voda. Ljubljana, Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo: 19-23.

Vesilind, A. P. 2003. Wastwater treatment plant design. London, IWA: 7-1-7-22, 8-1-8-27.

Sen. D., Copithorn. R., Randall. C., 2006. Evaluation of IFAS and MBBR facilities by applying the Aquifas Model: 6-38. http://www.aquifas.com (1.3.2007)

Sen. D., 2007. Aquifas – User manual Parts I, II and II. 9-150, 203-222

Odegaard, H. 2000. Water Science & Technology. Obseg 42, Številka 12: 37-46

Odegaard, H. 2006. Innovations in wastewater treatment: the moving bed biofilm process. Water Science & Technology. Obseg 53, Številka 9:17-33.

Maas, C., Jakson D., Featherstonhaugh, D., 2003. Fluidized fixed-film systems for cost effective upgrade of existing wastewater treatment plants: 3-14. http://www.hydroxyl.com (22.5.2007)

http://www.aquifas.com (1.3.2007)

http://www.anoxkaldnes.com (15.4.2007)

http://www.ciwem.org (10.3.2007)

PRILOGE

Priloga A: Obratovalni monitoring odpadnih vod komunalne čistilne naprave Rače (avgust 2007)

ZAVOD ZA ZDRAVSTVENO VARSTVO MARIBOR http://www.zzv-mb.si

Prvomajska ulica 1, 2000 Maribor INŠTITUT ZA VARSTVO OKOLJA
 INSTITUT ZA VARSTVO OKULJA
 Rezultati, označeni z #,

 Telefon: (02) 4500170
 Telefaks: (02) 4500227
 E-pošta: ivo@zzv-mb.si
 Rezultati, označeni z #,

 ID za DDV: SI30447046
 Številka transakcijskega računa: 01100-6030926630
 neakreditirano dejavnost

REZULTATI ANALIZ

SPLOŠNI PODATKI:

Naloga:	OBRATOVALNI MONITORING ODPADNIH VO	D - KČN RAČE	
Vodja naloge:	Alenka Pogačar, univ.dipl.inž.kem.inž. 认		
Naročnik:	OBČINA RAČE-FRAM		
	GRAJSKI TRG 14, 2327 RAČE		
Evidenčna številka:	13/00081-07/08686	Maribor,	06.09.2007
PODATKI O VZ	ORCU:		
Oznaka vzorca:	KČN RAČE - dotok OV na KČN	Datum vzorčenja:	16.08.2007
Lab. številka:	07/08686	Datum sprejema:	17.08.2007

Lab. številka: 07/08686

Vzorec odvzel: Cvikl, Bračko (IVO)

REZULTATI ANALIZ:

Parameter	Enota	Rezultat	Metoda	Začetek
	Podajanje	Opomba		Konec
OSNOVNI PARAMET	RI			
Videz		RJAVA		# 22.08.2007
				22.08.2007
pH - vrednost		7.4	ISO 10523	22.08.2007
				22.08.2007
Neraztopljene snovi	mg/l	33	ISO 11923	22.08.2007
				22.08.2007
ANORGANSKI PARA	METRI			
Celotni dušik	mg/l	33	DIN 38409-28 mod.	31.08.2007
	N			03.09.2007
Amonijev dušik	mg/l	23	ISO 5664	31.08.2007
	N			31.08.2007
Celotni fosfor	mg/l	3.9	ISO 6878-pogl.8	28.08.2007
	P			29.08.2007
ORGANSKI PARAMI	ETRI			
Kemijska potreba po	mg/l	470	ISO 6060	29.08.2007
kisiku-KPK	02			29.08.2007
Biokemijska potreba po	mg/l	270	EN 1899-1	30.08.2007
kisiku-BPK5	02			04.09.2007

- rezultati se nanašajo na neakreditirano dejavnost.

RezAna04h

Rezultati se nanašajo izključno na preiskan vzorec. Poročilo se brez pisnega dovoljenja inštituta ne sme reproducirati, razen v celoti. Ne sme se uporabljati v reklamne namene.

1/2

Evidenčna številka: 13/00081-07/08686

.

.

Maribor, 06.09.2007

Vzorec je bil v času do začetka analiz ustrezno hranjen. Vse dodatne informacije o opravljenem preskušanju so dostopne v inštitutu.

ODDELEK ZA ANALIZNO KEMIJO Vodja: Marjana Babiě, univ.dipl.inž.kem.inž. INŠTITUT ZA VARSTVO OKOLJA Predstojnik: Stanko Brumen, univ.dipl.inž.kem.inž.,spec.

- rezultati se nanašajo na neakreditirano dejavnost.

RezAna04h

Rezultati se nanašajo izključno na preiskan vzorec. Poročilo se brez pisnega dovoljcaja inštituta ne sme reproducirati, razen v celoti. Ne sme se uporabljati v reklamne namene.

2/2

ZAVOD ZA ZDRAVSTVENO VARSTVO MARIBOR

Prvomajska ulica 1, 2000 Maribor http://www.zzv-mb.si INŠTITUT ZA VARSTVO OKOLJA 6 I VO OKOLJA lefaks. (02) 4500227 E-pošta: ivo@zzv-mb.si številka transakcijskega računa: 01100-6030926630 neakreditirano dejavnost Telefon: (02) 4500170 Telefaks: (02) 4500227 ID za DDV: S130447046

REZULTATI ANALIZ

SPLOŠNI PODATKI:

Naloga:	OBRATOVALNI MONITORING ODPADNIH VO	DD - KČN RAČE	
Vodja naloge:	Alenka Pogačar, univ.dipl.inž.kem.inž. pv		
Naročnik:	OBČINA RAČE-FRAM		
	GRAJSKI TRG 14, 2327 RAČE		
Evidenčna številka:	13/00081-07/08687	Maribor,	06.09.2007
PODATKI O VZ	ORCU:		
Oznaka vzorca:	KČN RAČE - iztok OV iz KČN	Datum vzorčenja:	16.08.2007
Lab. številka:	07/08687	Datum sprejema:	17.08.2007

Lab. številka: 07/08687 Cvikl, Bračko (IVO) Vzorec odvzel:

REZULTATI ANALIZ:

Parameter	Enota Podajanje	Normativ	Rezultat Opomba	Metoda		Začetek Konec
OSNOVNI PARAMET	RI					
Videz		-	RJAVA		#	22.08.2007 22.08.2007
pH - vrednost		-	7.4	ISO 10523		22.08.2007
Neraztopljene snovi	mg/l	60	70	ISO 11923		22.08.2007 22.08.2007
ANORGANSKI PARA	METRI					
Celotni dušik (a)	mg/l N	25	21	DIN 38409-28 mod.		31.08.2007 03.09.2007
Amonijev dušik (a)	mg/l N	10	11	ISO 5664		31.08.2007 31.08.2007
Celotni fosfor	mg/l P	-	2.4	ISO 6878-pogl.8		28.08.2007 29.08.2007
ORGANSKI PARAMI	ETRI					
Kemijska potreba po kisiku-KPK	mg/l O2	125(b)	210	ISO 6060		29.08.2007 29.08.2007
Biokemijska potreba po kisiku-BPK5	mg/l O2	25(c)	50	EN 1899-1		30.08.2007 04.09.2007

S krepkimi znaki izpisan rezultat presega mejno vrednost - normativ. Ocena skladnosti ne upošteva podatkov o merilni negotovosti, posredujemo jih na zahtevo naročnika.

- rezultati se nanašajo na neakreditirano dejavnost.

RezAna04h

Rezultati se nanašajo izključno na preiskan vzorec. Poročilo se brez pisnega dovoljenja inštituta ne sme reproducirati, razen v celoti. Ne sme se uporabljati v reklamne namene.

1/2

Priloga B: Navodila za uporabo računalniškega modela Aquifas 3

Aquifas Level 1

Introduction to Aquifas 3 Setting up a Plant within Aquifas 3 Converting from IFAS to AS, Membrane Bioreactor and MBBRs Changing the Layout of the Reactor

> Dipankar Sen April 2007

Create a folder on your desktop called Aquifas

A) If you received Aquifas 4 only, it contains the sheets for Aquifas 2 and 3. You will have to unzip it and break this up into three files and save them. Else go to B.

- 1) Copy the file Aquifas 4 to your desktop.
- 2) Open Aquifas 4. This contains sheets for Aquifas 2, 3 and 4.a) Do not update links
- 3) Go to Tools, Options, Calculation
 - a) Check Manual, Uncheck Recalculation before Save, Iteration 100, Maximum Change 0.00001
- 4) Save as Aquifas31c1.
- 5) Move sheets for Aquifas 2 and Aquifas 4 into different files
 - a) Sheets Release 2 Run and Release 2 Results into a file called Aquifas 21c1
 - b) Sheets A4... (four sheets at the end) into a file called Aquifas 41c1
 - c) Save each file
 - d) You will now have three linked files Aquifas 21c1, Aquifas 31c1 and Aquifas 41c1.
- 6) Open Aquifas31c1
 - a) Go through each sheet once
 - b) Go to Sheet "Results 3 and 4", review the effluent value in Results and the graphs

MLSS MCRT (d)	4		Eff NH4N	Eff UnOxN	Eff NO3N	Eff SKN	Eff TKN	Eff TN
Media (m2)	1,208,594	Ļ	mg/L	mg/L	mg/L	mg/L 🖉	mg/L	mg/L
Flow Weighted Avg			1.1	1.7	2.7	2.0	3.1	5.8
Maximum			2.2	3.5	3.2	3.1	4.2	7.4
Minimum			0.1	0.2	2.0	1.0	2.1	4.1
					2	ŕ		
Effl at Avg Flow			0.78	1.22	2.16	1.7	2.8	5.0

B) If you have received separate files for Aquifas 2, 3 and 4, you need unzip each of them.

- 1) Open all three files, do not update the links initially, instead, go to Edit, Links, Change Source, Point to the correct file, and update values.
 - a. The file Aquifas 21ca1 should link to Aquifas 31ca1
 - b. The file Aquifas 31ca1 should link to Aquifas Aquifas 41ca1
 - c. The file Aquifas 41ca1 should like to Aquifas 31ca1 and a file IBA.. that you do not need at this time.
 - d. Go to Tools, Options, Calculation; Check Manual, Uncheck Recalculation before Save, Iteration 100, Maximum Change 0.00001
- 2) Save each file
- 3) Open Aquifas 31ca1
 - a) Go through each sheet once
 - b) Go to Sheet "Results 3 and 4", review the effluent value in Results and the graphs

MLSS MCRT (d)	4	Eff NH4N	Eff UnOxN	Eff NO3N	Eff SKN	Eff TKN	Eff TN
Media (m2)	1,208,594	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Flow Weighted Avg		1.1	1.7	2.7	2.0	3.1	5.8
Maximum		2.2	3.5	3.2	3.1	4.2	7.4
Minimum		0.1	0.2	2.0	1.0	2.1	4.1
Effl at Avg Flow		0.78	1.22	2.16	1.7	2.8	5.0

Reactor Configuration

The Appendix discusses how the configuration can be modified

RESULTS OF DYNAMIC SIMULATIO	N	Adjust the magnification of the Display to Display all Cells and SC												
Cell Number of Reactor		1	2	3	4	5	6	7	8	9	10	11	12	SC
Cell Number of Reactor, corrected for	or offline cells	1	2	3	4	5	6	7	8	9	10	10	10	SC
• • • •				. .								Reaeration	Reaeration	
Condition		Anaerobic	Anaerobic	Anoxic	Anoxic	Aerobic	Aerobic	Aerobic F	ost Anoxic P	ost Anoxic	Reaeration	Offline	Offline	Secondary
Volume of Cell	m3	328.125	328.125	273.4375	273.4375	838.54167	838.54167	838.54167	273.4375	273.4375	109.375	0	0	
Profiles under Average Daily Flow Con	ditions													
CODbio	mg/L	157.9	155.3	61.8	55.2	23.8	9.3	3.6	20.0	11.1	6.2	6.2	6.2	6.2
Particulate CODbio	mg/L	59.4	57.8	23.4	22.2	10.0	3.6	1.1	0.5	0.2	0.1	0.1	0.1	0.1
SCODbio	mg/L	98.5	97.5	38.5	33.0	13.8	5.7	2.5	19.4	10.9	6.1	6.1	6.1	6.1
UnoxNbio (unassimilated TKNbio)	mg/L	20.9	20.7	10.2	10.0	6.9	4.4	2.7	2.0	1.7	1.2	1.2	1.2	1.2
Particulate TKNbio + SorgNbio	mg/L	9.3	9.2	4.5	4.4	3.3	2.2	1.3	0.9	0.6	0.4	0.4	0.4	0.4
NH4N	mg/L	11.5	11.5	5.7	5.6	3.7	2.2	1.5	1.1	1.1	0.8	0.8	0.8	0.8
NO2N	mg/L													
NO3N	mg/L	0.0	0.0	1.5	0.4	1.7	3.5	4.9	3.4	1.9	2.2	2.2	2.2	2.2
OP	mg/L	2.61	3.46	1.60	1.58	0.53	0.20	0.20	0.20	0.20	0.00	0.00	0.00	0.00
Total Soluble P	mg/L	3.34	4.19	2.07	2.04	0.97	0.57	0.48	0.43	0.38	0.15	0.15	0.15	0.15
Total P bio (unassimilated)	mg/L	3.94	4.77	2.31	2.27	1.08	0.62	0.50	0.44	0.38	0.15	0.15	0.15	0.15
Alkalinity	mg/L	139	139	108	111	100	86	78	78	80	78	78	78	78
DO	Mg/L	0.15	0.05	0.30	0.05	3.00	4.00	4.00	0.30	0.08	5.00	5.00	5.00	0.00
Oxygen required to maintain set point	Kg/d	0	0	0	0	1455	989	569	0	0	219	0	0	0

SUMMARY															
							1	Post			Reaeratio	Reaeratio			
	Anaerobic	Anaerobic	Anoxic	Anoxic	Aerobic	Aerobic	Aerobic	Anoxic	Post Anoxic	Reaeration	n Offline	n Offline	Secondary		
		R1 R2	R	R4	R5	R6	R	R8	R9	R10	R11	R12			
Reactor Influent	 1.00 -	0.00 -	0.00 R3	0.00 ▶ R3	0.00 R3	0.00	0.00	0.00	0.00 -	0.00 -	0.00	0.00	0.00 -		
RAS / MBRrecycle	0.00 —	0.00 -	0.50 R3	0.00 R3	0.00 R3	0.00	0.00	0.00	0.00 🛶	0.00	0.00	0.00	0.00 🗕 🗌 🚺).50) 🗕	
MLR	1.00 _	0.00	0.00 R3	0.00	(1.00)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	→ L	
NR	0.00	0.00	2.00 R3	0.00	0.00	0.00	0.00	(2.00)	0.00	0.00	0.00	0.00	0.00 🛶	→ L	
Media Rec	0.00	0.00	0.00 R3	0.00	0.00 -+	0.00	0.00	0.00	0.00	0.00 🗕	0.00	0.00	0.00	-	
Future	0.0000 —	0.00 -	0.00	0.00	0.00 -	0.00	0.00	0.00	0.00	0.00 🗕	0.00	0.00	0.00	\rightarrow	
Supp Carbon	0.0000 -	0.0000	0.0000 R3	0.00	0.0000 -	0.0000 -+	0.0000	0.0001	0.0000 -+	0.0000 -	0.0000	0.0000	0.0000-	->	
			-+	→		-+			-+			+•	→	-	
	T		-	→		-					\rightarrow	+			
		└┙┯━━━┣╸	┹╋┻╌				┉		┌──┾└└		╞╾└╴		┌──┾──┼		→

7)	Objective: Get an understanding of how hourly flow rate affects performance.	Understand Dynamic Simulation.
	Sheet: Plant Influent Flow	

		C 1	
- XI	stind	1 TION	v rates
	Othic	4 110 1	v raioo

es	Time of Day	Time of Day	Ratio	Flow	Flow	Default
			of Instantaneous Flow			Values
	hours	hours	to Average Flow	m3/d	MGD	of Ratio
	7	7	1	17225	4.55	1
	8	8	1.1	18948	5.01	1.1
	9	9	1.2	20670	5.46	1.2
	10	10	1.3	22393	5.92	1.3
	11	11	1.2	20670	5.46	1.2
	12	12	1.1	18948	5.01	1.1
	13	13	0.9	15503	4.10	0.9
	14	14	0.8	13780	3.64	0.8
	15	15	0.9	15503	4.10	0.9
	16	16	1	17225	4.55	1
	17	17	1.1	18948	5.01	1.1
	18	18	1.2	20670	5.46	1.2
	19	19	1.3	22393	5.92	1.3
	20	20	1.3	22393	5.92	1.3
	21	21	1.2	20670	5.46	1.2
	22	22	1.1	18948	5.01	1.1
	23	23	1	17225	4.55	1
	0	24	0.8	13780	3.64	0.8
	1	25	0.7	12058	3.19	0.7
	2	26	0.5	8613	2.28	0.5
	3	27	0.75	12919	3.41	0.75
	4	28	0.8	13780	3.64	0.8
	5	29	0.85	14641	3.87	0.85
	6	30	0.9	15503	4.10	0.9
	7	31	1	17225	4.55	1
			24 000			-1

Begin at an hour where flows are at the diurnal average

Observe
graph on Sheet
"Results
Rel 3 & 4"

Existing results before the change

MLSS MCRT (d)	ł	1	Eff NH4N	Eff UnOxN	Eff NO3N	Eff SKN	Eff TKN	Eff TN
Media (m2)	1,208,594		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Flow Weighted Avg			1.1	1.7	2.7	2.0	3.1	5.8
Maximum			2.2	3.5	3.2	3.1	4.2	7.4
Minimum			0.1	0.2	2.0	1.0	2.1	4.1
					1			
Effl at Avg Flow			0.78	1.22	2.16 💆	1.7	2.8	5.0

Change the hourly flow rates

a) Subtract 0.1 from times 9, 10, 11b) Add 0.1 to times 1, 2, 3

Table 3	Time of Day	Time of Day	Ratio	Flow	Flow	Default
			of Instantaneous Flow			Values
	hours	hours	to Average Flow	m3/d	MGD	of Ratio
	7	7	1	17225	4.55	1
	8	8	1.1	18948	5.01	1.1
	9	9	1.1	18948	5.01	1.2
	10	10	1.2	20670	5.46	1.3
	11	11	1.1	18948	5.01	1.2
	12	12	1.1	18948	5.01	1.1
	13	13	0.9	15503	4.10	0.9
	14	14	0.8	13780	3.64	0.8
	15	15	0.9	15503	4.10	0.9
	16	16	1	17225	4.55	1
	17	17	1.1	18948	5.01	1.1
	18	18	1.2	20670	5.46	1.2
	19	19	1.3	22393	5.92	1.3
	20	20	1.3	22393	5.92	1.3
	21	21	1.2	20670	5.46	1.2
	22	22	1.1	18948	5.01	1.1
	23	23	1	17225	4.55	1
	0	24	0.8	13780	3.64	0.8
	1	25	0.8	13780	3.64	0.7
	2	26	0.6	10335	2.73	0.5
	3	27	0.85	14641	3.87	0.75
	4	28	0.8	13780	3.64	0.8
	5	29	0.85	14641	3.87	0.85
	6	30	0.9	15503	4.10	0.9
	7	31	1	17225	4.55	1
			24.000			

Press F9 to run model

MLSS MCRT (d)	4	Eff NH4N	Eff UnOxN	Eff NO3N	Eff SKN	Eff TKN	Eff TN
Media (m2)	1,208,594	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Elow Weighted Avg		1.0	1.6	0.7	1 0	3.0	F 7
		1.0	1.0	2.1	1.9	5.0	5.7
Maximum		1.7	3.1	3.2	/2.7	3.8	6.9
Minimum		0.1	0.2	2.0	/ 1.1	2.2	4.1
				1			
Effl at Avg Flow		0.78	1.22	2.16	1.7	2.8	5.0

Note the reductions in ammonium-N, SKN and TKN as a result of the change. Note the reductions in maximum hourly concentrations of the same.

8) Sheet "Hourly Flow and Conc"

- a) Increase dewatering recycle rate, cells Z26 and Z27 from 450 to 900 m3/d (very high rate of centrifuge ops)
- b) Increase TKN in recycle, cells AM26 and AM27, from 200 to 250 mg/L
- c) Run model, observe increase in hourly peak in results sheet (Table and graph), increase in average to 0.8 mg/L NH4N and 4.1 mg/L NoxN

Existing Conditions

Table 1b: Re	cycle to Head	lworks fron	n Solids Dev	watering an	d Solids Han	dling Proce	sses													
Dewatering	Digester	Recycle			TSS			BOD ₅		COD/BOD5			COD			TKN			TP	
Centrifuge	Supernate	Flow Rate		Conc		Load	, Conc		Load	Ratio		, Conc	I	Load	, Conc		Load	, Conc	I	Load
or Press	Rate	m /d		mg/L		kg/d	mg/L		kg/d			ma/L		kg/d	ma/L		kg/d	mg/L		kg/d
	hourly flow as								, in the second					<u> </u>						
	% of average																			
	Supernate	1		1			1			1		1			1			1		
	flow																			
On=1. Off=0	%	➡ 410		▶ 140		57.4	₱ 75		30.75	▶ 3.00		▶ 200		82	▶ 175		71.75	▶ 15		6.15
		+								L L		+			+			+		
0	100	350	350.00	100	100.00	35	40	40.00	14	3.00	3.00	120	120.00	42	100	100.00	35	10	10.00	3.5
1	0	450	450.00	150	150.00	67.5	70	70.00	31.5	3.00	3.00	210	210.00	94.5	200	200.00	90	15	15.00	6.75
1	0	450	450.00	200	200.00	90	100	100.00	45	3.00	3.00	300	300.00	135	200	200.00	90	20	20.00	9
1	0	450	450.00	200	200.00	90	100	100.00	45	3.00	3.00	300	300.00	135	200	200.00	90	20	20.00	9
1	0	450	450.00	200	200.00	90	100	100.00	45	3.00	3.00	300	300.00	135	200	200.00	90	20	20.00	9
1	0	450	450.00	200	200.00	90	100	100.00	45	3.00	3.00	300	300.00	135	200	200.00	90	20	20.00	9
1	0	450	450.00	200	200.00	90	100	100.00	45	3.00	3.00	300	300.00	135	200	200.00	90	20	20.00	9
1	0	450	450.00	200	200.00	90	100	100.00	45	3.00	3.00	300	300.00	135	200	200.00	90	20	20.00	9
1	0	450	450.00	200	200.00	90	100	100.00	45	3.00	3.00	300	300.00	135	200	200.00	90	20	20.00	9
1	0	450	450.00	150	150.00	67.5	70	70.00	31.5	3.00	3.00	210	210.00	94.5	200	200.00	90	15	15.00	6.75
0	100	350	350.00	100	100.00	35	40	40.00	14	3.00	3.00	120	120.00	42	100	100.00	35	10	10.00	3.5
0	100	350	350.00	100	100.00	35	40	40.00	14	3.00	3.00	120	120.00	42	100	100.00	35	10	10.00	3.5
0	100	350	350.00	100	100.00	35	40	40.00	14	3.00	3.00	120	120.00	42	100	100.00	35	10	10.00	3.5
0	100	350	350.00	100	100.00	35	40	40.00	14	3.00	3.00	120	120.00	42	100	100.00	35	10	10.00	3.5
0	100	350	350.00	100	100.00	33	40	40.00	14	3.00	3.00	120	120.00	42	100	100.00	33	10	10.00	3.5
0	100	450	450.00	125	125.00	56.25	40	80.00	36	3.00	3.00	200	200.00	42	200	200.00	35	15	15.00	6.75
0	300	450	450.00	125	125.00	56.25	80	80.00	36	3.00	3.00	200	200.00	90	200	200.00	90	15	15.00	6.75
0	300	450	450.00	125	125.00	56.25	80	80.00	36	3.00	3.00	200	200.00	90	200	200.00	90	15	15.00	6.75
0	300	450	450.00	125	125.00	56.25	80	80.00	36	3.00	3.00	200	200.00	90	200	200.00	90	15	15.00	6.75
0	300	450	450.00	125	125.00	56.25	80	80.00	36	3.00	3.00	200	200.00	90	200	200.00	90	15	15.00	6.75
0	300	450	450.00	125	125.00	56.25	80	80.00	36	3.00	3.00	200	200.00	90	200	200.00	90	15	15.00	6.75
0	300	350	350.00	100	100.00	35	80	80.00	28	3.00	3.00	200	200.00	70	200	200.00	70	15	15.00	5.25
0	100	350	350.00	100	100.00	35	40	40.00	14	3.00	3.00	120	120.00	42	100	100.00	35	10	10.00	3.5
0	100	350	350.00	100	100.00	35	40	40.00	14	3.00	3.00	120	120.00	42	100	100.00	35	10	10.00	3.5
		412.50		143		59.1	74		30.58333333	3.00		210		86.66666667	172		70.83333333	15.2		6.260416667
		412.5		143		59.1	74		30.58333333	3.00		210		86.7	172		70.8	15.2		6.260416667

MLSS MCRT	(d)		4	Eff NH4N	Eff UnOxN	Eff NO3N	Eff SKN	Eff TKN	Eff TN
Media (m2)		1,208,594		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Flow Weighte	ed Avg			1.1	1.7	2.7	2.0	3.1	5.8
Maximum				2.2	3.5	3.2	3.1	4.2	7.4
Minimum				0.1	0.2	2.0	1.0	2.1	4.1
						/			
Effl at Avg Fl	ow			0.78	1.22	2.16	1.7	2.8	5.0

New Conditions

Demotoria ::	Dimentar	Decusia				ananng i re		BOD	1	COD/ROD	1			I		TIZNI	- 1		TD	
Dewatering	Digester	Recycle		0	155	Land	0	BOD5	1 1	COD/BOD5		0	COD	Lind	0	IKN	1 1 1 1 1	0	18	Lind
Centriruge	Supernate	Flow Rate		Conc		Load	Conc		Load	Ratio		Conc		Load	Conc		Load	Conc		Load
or Press	Rate	m/a		mg/L		kg/d	mg/L		kg/d			mg/L		кд/а	mg/L		кд/а	mg/L		kg/a
	nourly flow as																	_		
	% of average																	_		
	Supernate	1		1			1			1		1			1			1		<u> </u>
	flow														-			1. 1.		
On=1, Off=0	<u> </u>	410		➡ 140		57.4	75		30.75	*3.00		200		82	175		71.75	₱ 15		6.15
	100	+		+	100.00		+			+	0.00	+		10	+			+	10.00	
0	100	350	350.00	100	100.00	35	40	40.00	14	3.00	3.00	120	120.00	42	100	100.00	35	10	10.00	3.5
1	0	450	450.00	150	150.00	67.5	70	70.00	31.5	3.00	3.00	210	210.00	94.5	200	200.00	90	15	15.00	6.75
1	0	900	900.00	200	200.00	180	100	100.00	90	3.00	3.00	300	300.00	270	250	250.00	225	20	20.00	18
1	0	900	900.00	200	200.00	180	100	100.00	90	3.00	3.00	300	300.00	2/0	250	250.00	225	20	20.00	18
1		450	450.00	200	200.00	90	100	100.00	45	3.00	3.00	300	300.00	135	200	200.00	90	20	20.00	- 9
1	0	450	450.00	200	200.00	90	100	100.00	45	3.00	3.00	300	300.00	135	200	200.00	90	20	20.00	
1	0	450	450.00	200	200.00	90	100	100.00	45	3.00	3.00	300	300.00	135	200	200.00	90	20	20.00	9
1	0	450	450.00	200	200.00	90	100	100.00	45	3.00	3.00	300	300.00	135	200	200.00	90	20	20.00	9
1	0	450	450.00	150	150.00	67.5	70	70.00	31.5	3.00	3.00	210	210.00	94.5	200	200.00	90	15	15.00	6.75
0	100	350	350.00	100	100.00	35	40	40.00	14	3.00	3.00	120	120.00	42	100	100.00	35	10	10.00	3.5
0	100	350	350.00	100	100.00	35	40	40.00	14	3.00	3.00	120	120.00	42	100	100.00	35	10	10.00	3.5
0	100	350	350.00	100	100.00	35	40	40.00	14	3.00	3.00	120	120.00	42	100	100.00	35	10	10.00	3.5
0	100	350	350.00	100	100.00	35	40	40.00	14	3.00	3.00	120	120.00	42	100	100.00	35	10	10.00	3.5
0	100	350	\$50.00	100	100.00	35	40	40.00	14	3.00	3.00	120	120.00	42	100	100.00	35	10	10.00	3.5
0	100	350	360.00	100	100.00	35	40	40.00	14	3.00	3.00	120	120.00	42	100	100.00	35	10	10.00	3.5
0	100	450	450.00	125	125.00	56.25	80	80.00	36	3.00	3.00	200	200.00	90	200	200.00	90	15	15.00	6.75
0	300	450	450.00	125	125.00	56.25	80	80.00	36	3.00	3.00	200	200.00	90	200	200.00	90	15	15.00	6.75
0	300	450	450,00	125	125.00	56.25	80	80.00	36	3.00	3.00	200	200.00	90	200	200.00	90	15	15.00	6.75
0	300	450	450.00	125	125.00	56.25	80	80.00	36	3.00	3.00	200	200.00	90	200	200.00	90	15	15.00	6.75
0	300	450	450.00	125	125.00	56.25	80	80.00	36	3.00	3.00	200	200.00	90	200	200.00	90	15	15.00	6.75
0	300	450	450.00	125	125.00	56.25	80	80.90	36	3.00	3.00	200	200.00	90	200	200.00	90	15	15.00	6.75
0	300	350	350.00	100	100.00	35	80	80.00	28	3.00	3.00	200	200.00	70	200	200.00	70	15	15.00	5.25
0	100	350	350.00	100	100.00	35	40	40.00	14	3.00	3.00	120	120.00	42	100	100.00	35	10	10.00	3.5
0	100	350	350.00	100	100.00	35	40	40.00	14	3.00	3.00	120	120.00	42	100	100.00	35	10	10.00	3.5
_																				
		450.00		148		66.6	76		34.333333333	3.00		218		97.91666667	182		82.08333333	15.6		7.010416667
		450.0		140		66.6			24 22222222	3.00		210		07.0	100		02.1	15.6		7.040446667
		400.0		148		00.0	/6		34.333333333	3.00		218		97.9	162		02.1	10.0		1.010410007

Changes are in the boxes highlighed in red.

Press F9 to run the model for the new conditions.

MLSS MCRT (d)	4	Eff NH4N	Eff UnOxN	Eff NO3N	Eff SKN	Eff TKN	Eff TN
Media (m2)	1,208,594	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Flow Weighted Avg		1.2	1.9	2.9	1.8	2.3	5.2
Maximum		3.8	5.1	5.1	4.4	4.9	10.0
Minimum		0.1	0.2	2.0	0.7	1.2	3.1
					Í		
Effl at Avg Flow		0.78	1.21	2.16	1.4	1.9	4.0

Note the increase in NH4N, SKN and TKN. Also note the increase in NO3N.

Look at the hourly data for 9 am and 10 am and compare it to the earlier data (by reverting back to original values).

This should give you an appreciation of how to use the model to determine impact of variations in hourly recycle rates and concentrations from solids dewatering and from added waste streams.

d) Revert back to earlier values - see previous page for earlier values.

- 9) Sheets "Kinetics T & MCRT" and "Results Rel 3 & 4"
 - a) The MLSS MCRT can be increased in cell Sheet "Kinetics T & MCRT", Cell G4 if the value of the Driver in the Sheet "Results Rel 3 & 4" is set to 0. The driver allows the user to change values from the Results sheet.

- c) Take a look at cells D137 (MLVSS of 2011 mg/L), D62 and D63 (MLSS of 2662 mg/L). These are for MLSS MCRT of 4 days.
- d) Also take a look at the results at the 6 hour Nominal HRT for the ENR system. Aerobic MLSS MCRT is 2.6 days (Cell D162, Sheet Run Assistant Rel 3 & 4).

MLSS MCRT (d)	4		Eff NH4N	Eff UnOxN	Eff NO3N	Eff SKN	Eff TKN	Eff TN
Media (m2)	1,208,594	ļ	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Flow Weighted Avg			1.1	1.7	2.7	2.0	3.1	5.8
Maximum			2.2	3.5	3.2	/ 3.1	4.2	7.4
Minimum			0.1	0.2	2.0	1.0	2.1	4.1
					<u></u>	ĺ		
Effl at Avg Flow			0.78	1.22	2.16	1.7	2.8	5.0

e) In cell D134, Sheet "Results Rel 3 & 4" raise MLSS MCRT from 4 to 5 days

f) Press F9 to run model

g) Note increase in in MLVSS from 2010 mg/L to 2483 mg/L, note reduction in NH4N from 1.1 to 0.7 mg/L; reduction in SKN of 0.8 mg/L (assuming no changes in sludge production, nitrification increased by 0.8 mg/L), and increase in NO3N of 0.1 mg/L (denitrification increased by 0.7 mg/L)

MLSS MCRT (d)	\$	Eff NH4N	Eff UnOxN	Eff NO3N	Eff SKN	Eff TKN	Eff TN
Media (m2)	1,208,594	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Flow Weighted Avg		0.7	0.9	2.8	1.3	2.4	5.2
Maximum		1.5	2.1	3.6	/ 2.2	3.3	6.9
Minimum		0.1	0.1	1.8	0.8	1.9	3.7
Effl at Avg Flow		0.38	0.57	2.24	1.1	2.1	4.4

10) Sheet Kinetics T and MCRT

- a) In cell G5, raise temperature from 9 to 15 C.
 - i. Since this is an open source model, you can modify the spreadsheet to include temperature in the Driver Table on Sheet "Results Rel 3 & 4".
- b) Run model by pressing F9

MLSS MCRT (d	d)	l.	5	Eff NH4N	Eff UnOxN	Eff NO3N	Eff SKN	Eff TKN	Eff TN
Media (m2)		1,208,59	1	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Flow Weighted	Avg			0.5	0.6	2.7	1.1	2.0	4.7
Maximum				1.1	1.4	3.6	/ 1.7	2.6	6.2
Minimum				0.1	0.1	1.8	0.7	1.6	3.4
							ĺ		
Effl at Avg Flow	N			0.27	0.36	2.13 💆	0.9	1.7	3.9

- c) Go to sheet "Results Rel 3 & 4" NH4N decreases from 0.7 to 0.5 mg/L, SKN decreased from 1.3 to 1.1 mg/L; NOxN decreases from 2.8 to 2.7 mg/L.
 - i. Therefore, assuming that there are no changes in sludge production, nitrification increased by 0.2 mg/L, denitrification increased by 0.3 mg/L.
- d) Try 12 C, NH4N increases to 0.6 mg/L, NOxN to 2.8 mg/L
- e) Revert back to original values of 4 day MLSS MCRT and 9 Celsius liquid temperature
 - i. Change Cell D134, Sheet "Results Rel 3 & 4" to 4 days
 - ii. Change Cell G5, Sheet "Kinetics, T & MCRT" to 9 C

11) Sheet Kinetics T and MCRT - Inhibition of kinetics over rates determined in pilot studies

a) Cells D16, D40, D62, D93 for the biomass in MLVSS

b) Cells D149 and D159 for the biomass in biofilms

Table 1	Heterotrophs, Kinetics Coefficients	In Suspended Solids	Units	NU = Not Used	Values	Default Values
	Aerobic, MLSS	For full cools plants, there can be come inhibition of umblear compared to pilot cools react			209/	209/
	Recommended inhibition	For full scale plants, there can be some minibilion of unimate compared to pliot scale reaction	15		20%	20%
	UMHaer before inhibition				5.25	5.25
	YHaer	Aerobic Heterotrophic Yield (for MLSS and biofilm)			0.41	0.41
	umHaer after inhibition	Aerobic Max growth rate for Heterotrophs at T specified below	day^-1		4 .2	4.2
		mg MLVSS generated/mg COD utilized aerobically/day	/			
	qmHaer	Aerobic Max substrate utilization rate, umHaer/YHaer at T specified below	day^-1		10.24	10.24
	for the first hard state of the second lite	mg COD utilized/mg Heterotrophic MLVSS/d				
	Tactor for decay rate value on qmH	If the effect of COD release from biomass is factored in dminater, factor = 1, else factor = 0	· . /	NU	1	25
		remperature at which the above values of umHaer and dmHaer are specified	6		25	25
	theta umHaer and qmHaer	Coefficient to adjust umaer and qmaer for temperature (Arrhenius Equation)	coefficient		1.03	1.03
	KsHaer	Aerobic Half Saturation Constant for COD Utilization at T specified below	ma/L		70	70
	Ts	Temperature for above value for KsHaer	C		25	25
	theta KsHaer	temperature coefficient for KsHaer			1.03	1.03
	kdHaer	Aerobic Decay rate for heterotrophs	day-1		0.086	0.086
	Ts	Temperature at which the above value of kdHaer is specified	Ċ		25	25
	theta kdHaer	Coefficient to adjust kdHaer for temperature (Arrhenius equation)			1.055	1.055

The 20 percent inhibition in maximum substrate utilization rate from 5.25 to 4.2 is shown here

Pre-Anoxic MLSS				
Recommended inhibition	For full scale plants, there can be some inhibition of umHaer compared to pilot scale reactors		20%	20%
ImHanx Pre before inhibition			2.6	2.6
/hanx Pre	Anoxic Heterotrophic Yield (for MLSS and biofilm)		0.31	0.31
umHanx Pre	Anoxic Max growth at T specified below	day-1	2.08	
	mg MLVSS generated/mg COD utilized anoxically/day			
ımHanx Pre	Anoxic Max substrate util rate at 25 C, umHdn/YHdn	day-1	6.71	
	<i>Pre-Anoxic MLSS</i> Recommended inhibition ImHanx Pre before inhibition /hanx Pre ImHanx Pre ImHanx Pre	Pre-Anoxic MLSS Recommended inhibition imHanx Pre before inhibition For full scale plants, there can be some inhibition of umHaer compared to pilot scale reactors 'hanx Pre Anoxic Heterotrophic Yield (for MLSS and biofilm) Anoxic Max growth at T specified below mg MLVSS generated/mg COD utilized anoxically/day mHanx Pre Anoxic Max substrate util rate at 25 C, umHdn/YHdn	Pre-Anoxic MLSS For full scale plants, there can be some inhibition of umHaer compared to pilot scale reactors ImHanx Pre before inhibition Anoxic Heterotrophic Yield (for MLSS and biofilm) ImHanx Pre Anoxic Max growth at T specified below day-1 ImHanx Pre Anoxic Max growth at T specified below day-1 ImHanx Pre Anoxic Max substrate util rate at 25 C, umHdn/YHdn day-1	Pre-Anoxic MLSS For full scale plants, there can be some inhibition of umHaer compared to pilot scale reactors 20% Recommended inhibition imHanx Pre before inhibition 2.6 2.6 /hanx Pre Anoxic Heterotrophic Yield (for MLSS and biofilm) 0.31 imHanx Pre Anoxic Max growth at T specified below day-1 2.08 imHanx Pre Anoxic Max substrate util rate at 25 C, umHdn/YHdn day-1 6.71

For biomass in biofilms

					Default				
Table 3	Biofilm	For Biomass In Biofilm	Units	Values	Values				
		For Semi-Empirical Model (Release 3)							
	Biofilm growth and formation - heterotrophs	Note: The Biofilm Model in Release 4 uses a Mechanistic Approx	ach based on diffusion and substrate utilization	within layers of					
		biofilm. It does not use the semi-empirical equation	as whose coefficients are specified in this Table.						
	Equation for Aerobic Uptake of COD								
		Dm = Max COD uptake rate under aerobic conditions based on biofilm	growth (bfg) and nature of biofilm						
	Dm = [qmHaer bfg* S/(KsHbfgaer + S) + g]	It is a function of steady state soluble biodegradable COD in aerobic ce	It is a function of steady state soluble biodegradable COD in aerobic cell (reactor)						
		Note: qmHaerbfg and KsHbfg were determined experimentally by running batch tests for COD utilization on biofilm removed from each cell of continuous flow system operating at different MLSS MCRTs. The values of S are the values of CODb in the cell of the continuous flow reactor (refer to User Manual for the references).							
	Dactual	Dactual =Dm*DO/(KHDObf+ DO) *CODbio/(Ksbf2+CODbio)							
	Equation for Anoxic Uptake of COD	Dactual is computed for each aerobic cell (Dactual cell #)							
	Dm = [qmHanx bfg* S/(KsHbfganx + S) + g]	Dm = Max COD uptake rate under anoxic conditions based on biofilm g	rowth (bfg) and nature of biofilm						
	Percent Inhibition	If % inhibition is used, gmHaerbfg = Default Value * (1 - Fraction Inhibiti	on)	0%					
	qmHaer bfg before inhibition	maximum rate of COD utilization by biofilm under aerobic conditions	day^-0	22.9	22.9				
	qmHaer bfg after inhibition	max rate before inhibition * (1 -fraction inhibition)	day^-1	22.9					
	T for qmHaer bfg	temperature at which qmHaer bfg is specified above	C	12	12				
	theta qmHaer bfg	Default value equal to theta for qmHaer for suspended solids is used	factor	1.03	1.03				
	KsHbfgaer	Half saturation constant in equation for variation of qmaerbfg with CODb	mg/L	19.287	19.3				
	g	Note: values of qmaerbfg & Ksbfg used in this model are for solving equation for D s	tatistically for g = 0	0	0				

Note: In general, biofilm kinetics are not inhibited as much as MLVSS in IFAS systems. NO3N, SCODbio on Nitrifiers, are accounted for in the equations.

Recommend using a 20% inhibition if there is no other data. If the plant is receiving septage or chemicals, the biofilm kinetics need to be developed on wastewater with similar characteristics.

Let's modify the input for 20 percent inhibition of biofilm kinetics, both for the heterotrophs and the nitrifiers. and D159 in Sheet "Kinetics, T and MCRT" to 20%. Please make sure that the value does not become 2000%.

Change cell D149

The reduction in kinetics due to reduction in DO,

MLSS MCRT (d)	4	Eff	NH4N	Eff UnOxN	Eff NO3N	Eff SKN	Éff TKN	Eff TN
Media (m2)	1,208,594	m	ng/L	mg/L	mg/L	mg/L	é mg/L	mg/L
			1.6	2.2	2.7	2.5	3.6	6.3
Maximum		3	3.3	4.6	3.2	4.2	5.3	8.5
Minimum		(0.1	0.2	2.0	1.0	2.1	4.2
					×	Č.		
		1	.09	1.51	2.25	2.0	3.1	5.4

Conclusion: Inhibition of biofilm kinetics at the 4 day MLSS MCRT and 9 C did have a significant impact on effluent NH4N. Revert back to original values (implies no inhibition of rates in the biofilm over those in pilot studies used to determine kinetics) in Cells D149 and D159 in Sheet "Kinetics, T & MCRT". Enter value of 0.

MLSS MCRT (d)	4	Eff NH4N	Eff UnOxN	Eff NO3N	Eff SKN	Eff TKN	Eff TN
Media (m2)	1,208,594	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Flow Weighted Avg		1.1	1.7	2.7	2.0	3.1	5.8
Maximum		2.2	3.5	3.2	3.1	4.2	7.4
Minimum		0.1	0.2	2.0	/ 1.0	2.1	4.1
					ŕ		
Effl at Avg Flow		0.78	1.22	2.16 💆	1.7	2.8	5.0

12) Analysis of media specific surface area requirements for the reactor volume specified Sheet "Volume and Media Configuration"

- a) Change Cell E22 to from 325 m2/m3 to 150 m2/m3. For this, the driver sheet needs to be off.
- b) If Driver is on (Driver = 1), this can be done from Results Rel 3 & 4, Cell D135.
 A value of 150 m2/m3 is representative of sponge media at 33% fill or plastic media similar to Kaldnes K1 and Bioportz at 30% fill.
- c) Run model, Go to Results 3 & 4, Cell H184; Observe increase in NH4N from 1.1 mg/L to 3.9 mg/L

MLSS MCRT (d)		1	Eff NH4N	Eff UnOxN	Eff NO3N	Eff SKN	Eff TKN	Eff TN
Media (m2)	557,813	8	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Flow Weighted Avg			3.9	5.2	2.1	5.3	6.4	8.5
Maximum			7.2	9.8	2.5	8.6	9.8	12.3
Minimum			0.6	0.7	1.6	2.0	3.1	4.7
Effl at Avg Flow			2.61	3.51	1.89	4.0	5.2	7.0

Discuss what options available to achieve an effluent NH4N less than 1 mg/L at this plant.

d) Change Cell 100 m2/m3, rerun, note increase in effluent NH4N to 6.4 mg/L

Note that this SSA can be achieved with certain types of fixed bed cord type media, moving bed of sponge and plastic media.

MLSS MCRT (d)		4	Eff NH4N	Eff UnOxN	Eff NO3N	Eff SKN	Eff TKN	Eff TN
Media (m2)	371,87	•	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Flow Weighted Avg			6.4	8.0	1.4	8.0	9.2	10.7
		I						
Maximum		I	10.4	13.3	2.0	11.9	13.2	15.1
Minimum		I	1.4	1.5	1.0	3.0	4.2	5.2
						ĺ		
Effl at Avg Flow			4.56	5.64	1.41	6.1	7.4	8.8

- e) If the Driver Table is off, increase volume in Cell E12 from 4375 m3 to 6000 m3. This is a 8.4 h HRT for ENR configuration. (If the Driver Table is on, this can be changed in the sheet "Results Rel 3 & 4" Cell D136.
 - i. Note reduction in NH4N from 6.4 to 4.4 mg/L

MLSS MCRT (d)	4	ļ	Eff NH4N	Eff UnOxN	Eff NO3N	Eff SKN	Eff TKN	Eff TN
Media (m2)	510,000		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Flow Weighted Avg			4.4	5.7	1.9	5.8	7.0	9.0
Maximum			7.6	9.9	2.8	9.0	10.2	13.0
Minimum			1.0	1.1	1.4	2.4	3.7	5.0
						ŕ		
Effl at Avg Flow			2.69	3.65	1.69 💆	4.1	5.4	7.1

- ii. Note the reduction in MLVSS. The MLSS MCRT can be increased to 6 days. This brings NH4N down to 1.8 mg/L. The MLVSS is close to 2000 mg/L (Cell D137), which is about the same as at the 4 day MLSS MCRT.
- iii. Note that use of sufficient quantity of fixed bed media installed across the length of a tank with 4:1 L/W ratio has reduced SVIs (Annapolis, Geisselbullach).

MLSS MCRT (d)	e	5	Eff NH4N	Eff UnOxN	Eff NO3N	Eff SKN	Eff TKN	Eff TN
Media (m2)	510,000)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Flow Weighted Avg			1.8	2.0	2.7	2.4	3.6	6.3
Maximum			3.6	4.2	3.2	4.3	5.4	8.6
Minimum			0.1	0.1	2.1	0.8	1.9	3.9
Effl at Avg Flow			0.87	1.05	2.24	1.5	2.7	4.9

f) Increase the MLSS MCRT to 7 days, assuming that SVI goes down from 125 to 80 mL/g. Even with a higher MLVSS of Same impact on clarifiers.

MLSS MCRT (d)	7		Eff NH4N	Eff UnOxN	Eff NO3N	Eff SKN	Eff TKN	Eff TN
Media (m2)	510,000		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Flow Weighted Avg		I	1.0	1.1	2.9	1.6	2.5	5.4
		I						
Maximum		Ι	2.5	2.7	3.6	3.1	4.0	7.6
Minimum		Ι	0.1	0.1	1.9	0.7	1.6	3.5
Effl at Avg Flow		I	0.35	0.45	2.30	0.9	1.9	4.2

MLSS MCRT	days	7.0
Temperature	С	9.0
MLVSS	mg/L	2251
MLSS	mg/L	3512
% VSS	-	64%
WAS MLVSS	mg/L	6529
fnitr1		0.79%
fnitr2	,	0.80%

The chemical dosing rate needs to be adjusted. Cell G19 in Sheet "Chemical Addition", which specifies the Chemical dose required may be lower. Use a ratio of 2. The ash and inerts present in the chemical feed in cell G31 may be lower.

- g) Revert back to original values. One trick try not to raise the ammonium-N levels too high. Therefore, increase SSA to 325 m2/m3 (D135) first, then decrease MLSS MCRT to 4 days (D134) and as a final step, decrease volume to 4375 m3 (D136).
- h) Discuss results

MLSS MCRT (d)	4	Eff NH4N	Eff UnOxN	Eff NO3N	Eff SKN	Eff TKN	Eff TN
Media (m2)	1,208,594	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Flow Weighted Avg		1.1	1.7	2.7	2.0	3.1	5.8
Maximum		2.2	3.5	3.2	/ 3.1	4.2	7.4
Minimum		0.1	0.2	2.0	1.0	2.1	4.1
				1			
Effl at Avg Flow		0.78	1.22	2.16	1.7	2.8	5.0

MLSS MCRT Temperature MLVSS MLSS % VSS WAS MLVSS	days C mg/L mg/L mg/L	4.0 9.0 2011 2662 76% 5819
fnitr1	mg/∟	0.69%
fnitr2		0.71%

12) Reactor Configuration Sheet

- a) Review the Sheet "Reactor Configuration".
- b) Change Nitrate Recycle from 2Q to 1Q (change Cells B6 and K17 to +1; Cell N30 to minus 1). Minus 1 implies that nitrate recycle is pumped out of this tank

c) Note increase in effluent NOxN from 2.7 to 4.2 mg/L mg/L in Cell J184, Sheet Results Rel 3 & 4.

MLSS MCRT (d)	4	Eff NH4N	Eff UnOxN	Eff NO3N	Eff SKN	🖉 Eff TKN	Eff TN
Media (m2)	1,208,594	mg/L	mg/L	mg/L	mg/L 🦯	mg/L	mg/L
		1.0	1.6	4.2	1.9	3.0	7.2
Maximum		2.0	3.2	5.2	2.8	3.9	9.1
Minimum		0.1	0.1	2.9	0.9	2.0	4.9
		_	4	_			
		0.68	1.02	3.44	1.5	2.6	6.1

d) Change methanol dosing from 0.001Q (COD supplement of 50 mg/L in terms of the reactor influent flow) to 0.0015 in cells B9 and O33 (COD supplement of 75 mg/L)

 \mathbf{i}

The amount of COD supplement is shown in Table 3, Sheet "Influent and Effluent Data", Cell G58

Table 3	Supplemental Carbon		Units	NU = Not Used i Model	ⁿ Values
	Methanol		mg/L CO	DD as pure	1000000
		Percent Purity			0.5
		Strength	mg/L as	used 🔪	500000
		Flow	as ratio	```	0.00015
		Equivalent COD supplement			X 75

e) Note the reduction in effluent NOxN from 4.2 to 2.5 mg/L

MLSS MCRT	(d)	4	Eff NH4N	Eff UnOxN	Eff NO3N	Eff SKN	Eff TKN	Eff TN
Media (m2)		1,208,594	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
			0.7	1.1	2.5	1,4	2.6	5.1
Maximum			1.6	2.5	3.4	2.4	3.5	6.8
Minimum			0.1	0.1	1.7	0.8	2.0	3.7
					_			
			0.32	0.57	1.87	1.1	2.2	4.1

This shows how methanol dose affects effluent NO3N in the ENR configuration. Some other substrate can be used instead of methanol. Its COD per L would be specified in Table 3, Sheet "Influent and Effluent Data". The kinetics of denitrification with this substrate are specified in the Sheet "Kinetics, T & MCRT". The model is able to use two sets of denitrification kinetics for denitrification with two different substrates.

Also, note the increase in MLVSS from 2010 to 2185 mg/L (Sheet "Results Rel 3 & 4" Cell D61, Sheet, Results Rel 3 & 4) and in the Driver Table Cell D137. This is because of the increase in COD added as methanol.

Reactor Parameters

MLSS MCRT	days	4.0
Temperature	С	9.0
MLVSS	mg/L	2185
MLSS	mg/L	2829
% VSS		77%
WAS MLVSS	mg/L	6323
fnitr1		0.61%
fnitr2		0.62%

13) Sheet DO and Aeration

- a) For the higher methanol dose, check the DO levels in Row 124 in Sheet "Results Rel 3 & 4"
- b) Model is asking you to lower estimate of DO in the first post anoxic cell (because of the higher methanol dose). Also, it is asking you to lower the estimate of DO in the pre-anoxic cell because you reduced the nitrate recycle.

DO and Aeration														
Cell Number of Reactor		1	2	3	4	5	6	7	8	9	10	11	12	SC
Cell Number of Reactor, corrected for offline cells		1	2	3	4	5	6	7	8	9	10	10	10	SC
												Reaeration F	Reaeration	
Condition		Anaerobic	Anaerobic	Anoxic	Anoxic	Aerobic	Aerobic	Aerobic	Post Anoxic P	ost Anoxic Re	aeration	Offline (Offline S	Secondary
Volume of Cell		328	328.1250	273.438	273.438	838.542	838.542	838.542	273.438	273.438	109.375	0.000	0.000	
DO setpoint estimated for anaerobic & anoxic, specif	ied for aei	robic												
	mg/L	0.1500	0.050	0.300	0.050	3.000	4.000	4.000	0.300	0.075	5.000	5.000	5 .000	_
For unaerated cells in reactor DO entrainment by diffusion from surface in	kg/d	20.0000	20.000	20.000	20.000	0.000	0.000	0.000	20.000	20.000	0.000	0.000	0.000	
		Lower	Lower	Lower					Lower					
Check on calc: Is estimated setpoint OK for		estimate of	estimate of	estimate of		not	not	not	estimate of		not	not		
unaerated reactors		DO	DO	DO	OK	applicable	applicable	applicable	DO	ОК	applicable	applicable	ар	
For aerated cells in reactor														
Aeration Capacity	kg/d	0.0000	0.000	0.000	0.000	2350.000	2350.000	1750.000	0.000	0.000	400.000	0.000	0.000	
DO required to maintain setpoint	kg/d	0.0000	0.000	0.000	0.000	1518.784	951.339	503.613	0.000	0.000	223.708	0.000	0.000	
Decision regarding quantity of DO being		not	not	not	not				not	not				
transferred		applicable	applicable	applicable	applicable	ок	ОК	ОК	applicable	applicable	ОК	ОК	ок	
Is DO setpoint OK based on aeration		Not	Not	Not	Not				Not	Not		Not	Not	8
capacity		Applicable	Applicable	Applicable	Applicable	Yes	Yes	Yes	Applicable	Applicable	Yes	Applicable	Арр	4

c) Go to Sheet "DO and Aeration"

Lower the DO level in the pre and post anoxic cells slightly.

- 1. Try 0.25 mg/L for the first pre anoxic cell, 0.2 mg/L for the first post anoxic cell. Press F9.
- 2. In Row 34, Table 3, Line 7, the model now asks you to lower the DO in the second preanoxic and second post anoxic cell because of the reduction in DO coming from the cell upstream.
- 3. Lower these to 0.025 mg/L in the first preanoxic cell and 0.05 in the second post anoxic cell. Press F9.
- 4. Adjust the value in the second pre-anoxic cell to 0.0375. Press F9.
- 5. You may have to adjust the value in the first pre-anoxic cell to 0.15 mg/L and Press F9.
- 6. Check that the oxygen demand in the aerobic zones can be satisfied by the capacity of the aeration devices.
 - a. This check can be performed in Row 1 and 4 of Table 4, Sheet DO and Aeration or in Row 124 and 126 in the Sheet " Results Rel 3 & 4.
 - b. If the oxygen demand exceeds capacity, lower set point or increase capacity of aeration system in cell.
 - c. Save the file as Aquifas 31c2.

15) Convert to MBBRS (Mobile Bed Biofilm Reactors) or Moving Bed Biofilm Reactor (MBBRTM) for a secondary system application

Note that it is likely that you will reach a point of instability in the NO3N and DO computations. We will discuss how to overcome these if we have time.

Open file Aquifas 31c1.

	1 Switch from	n Dynamic Simul	ation Mode to Steady	State Mode by cha	nging value	in Sheet "P	lant Influe	ent Flow", Ta	ble 2								
	_	Time Step for Dynan	nic Simulation	hours	1												
	Table 2	Simulation	Steady State = 0	Dynamic = 1	0												
					•									MLSS I	MCRTs ir	1 success	ive runs
	2 Observe the	e results in Dyna	mic Simulation Table	In Steady State, s	Decessive	rows should	have the	same values	, ESPECIA	LLY for NO	3N		_	MBBRs			
Table 9: Hourly S	Simulation				\rightarrow									4.0)		
	Time of	Ratio		Time Step	Flow	\searrow	Second	lary Effluent					_	3.6	5		
	Day	of Inst Flow				Eff SCODbio	Eff NH4N	Eff UnOxN	Eff NO3N				_	3.2	2		
		to Avg Flow			m3/d			mg/L	<u> </u>					2.9)		
hours	hours	0	0	1	17471.2	17.6	1.2	4.7	2.8					2.6	5		
7	7	1	0	1	17471.2	17.6	1.2	4.7	2.9				_	2.4			
8	8	1.101083497	0	2	17471.2	17.6	1.2	4.7	2.9				_	2 .1			
9	9	1.199668597	0	3	17471.2	17.6	1.2	4.7	2.9				- /	1.9)		
10	10	1.2975783	0	4	17471.2	17.6	1.2	4.7	2.9				_ /	1.7			
11	11	1.198981753	0	5	17471.2	17.6	1.2	4.7	2.9				/	1.5)		
12	12	1.100396653	0	6	1/4/1.2	17.6	1.2	4.7	2.9				-	1.4	+		
13	13	0.906643505	0	7	1/4/1.2	17.6	1.2	4.7	2.9				-	1.	5		
14	14	0.808058405	0	8	1/4/1.2	17.6	■ 1.2	4.7	₹ 2.9				-	1.1			
											+ /		-	0.01			
	Cradually d	oorooco the MLS	S MCDT lowering it l	v 10 porcept in eac	h successi								-	0.92	<u> </u>		
_	a Gradually u			by to percent in eac								-	-	0.64	<u>.</u>		
		Caution: Below	a WLSS WCRI of 20	ays, limit reduction		ICR 1 to 10 p	ercent be	ween succe	ssive runs	/	1		_	0.74	-		
		Take Steps 4 ar	ta 5 below, once the e	inuent NH4N gets a	above 1.5 m	ig/L.							_	0.67	, 		
		Check for signs	of instability betwee	n successive runs a	as discusse	ed in Step 6							_	0.60)		
										r				0.54	-		
3	Bb Once MLVS	S is below 2000	mg/L, reduce RAS red	cycle rate to 0.25									_	0.49)		
		Subsequently, t	his may be reduced t	o 0.0. The model wi	ill use a def	ault value of	0.1 speci	fied in Sheet	t "Reactor (Config" Cel	I P59	-		0.44	ļ		
		This default valu	e may have to be increa	ased to 0.25 if there a	are signs of i	nstability								0.39)		
	Adjust the	value in Cell G12	3, Sheet Run Assista	nt Rel 3 & 4 to 1000	. This tells	the model th	hat when I	MLVSSis									
		This tells the m	odel that when MLSS	is less than 1000 m	ng/L, the Wa	asting from t	he clarifie	r is based o	n a timer.					0.35	5		
		The WAS is set to	a value equal to value s	pecified in Sheet "Rea	ctor Config" (Cell P58											
3	c Reduce me	thanol dosing to	post anoxic cell in Sh	eet "Reactor Confi	g", Tables 1	l and 2, if eff	luent SCC	Dbio in Tab	le 10, Shee	t "Results F	Rel 3 & 4"i	s above 15	5 mg/L				
		Use the Driver Ta	ble in Sheet "Results Rel	3 & 4" to make the ch	anges												
			Select Value of 1 to use	the Driver Table													
					L												
				Continue until MLSS	MCRT drops	below the Nor	ninal HRT										
	-	- /		Nominal HRT = Volu	me of Reacto	or / Average Fl	ow									$ \longrightarrow $	
				Nominal HRT correct	cted for biofiln	n = Volume of	Reactor (1	- BVF) / Avera	age Flow		-	-	-	<u> </u>		\vdash	
		-/			1			1	<u> </u>	L						├ ──┤	
DRIVER				- 1	-	10 drive comp	outations fror	n this sheet, se	t value = 1, els	se u							
	MLVSS MCR	T	days	2.00	L												
	Biofilm SSA a	s applied	m2/m3	350.00	L												
	Total Volume	of Cells	m3	7000.00													
	MLVSS		Img/L	245	I		Suggestion	: rerminate rer	uns once MLV	SS drops belo	w 150 mg/L	1					
																├ ──┤	
1	increase th	e SSA. It SSA re	eacnes maximum allo	wable (usually arou	ina 350 m2/	m3 at 66 per	cent fill vo	oiume tractio	on). Use the	Driver Tab	ole in Sheet						
	4 "Results R	el 3 & 4"															
		Note: The value	of SSA from the Driv	er Table is not use	d if the follo	wing value	cell point	ed to) is 0 to	specify dif	ferent SSA	s in differe	nt cells.					
		/								/	/						
1	Increase V	olume of Tark	Suggest taking this up	to 33% of the aver	ana daily fl		houre) a	nd lowering	it after the			ч					
	o increase V			to 55 % of the aver	age uaily lie		nours) al	la lowering			Tisreuuce	u.				├ ──┤	
		HRT can be larg	<u>ger for lagoons and hi</u>	gh strength plants													

From Sheet " Volume and Media Configuration	n								/						
Table 2 Media Process		MBBRs			Refer to t	he User Manu	al on steps t	o be follow	ed to change t	the volume ir	n concert v	with chang	ges in the	Average	Daily Flow.
								X							
				Compu	utational As	sistant			Equivalent	Volume Fra	ctions for	Use in Re	eactor Co	nfiguratio	n for Releaes 2
				# of cells		Volume per c	ell /			١	/ol Fractic	oa Biofilm	SSA		BVF Cell
Total Volume of Cells in	m3 or L	7000	7000			m3 or L	/	1							
Anaerobic Fractio	on .	0.05	0.05	2	2	162.5		1	Anaer Fractio	on	0.05				
Anoxic Fraction		0.125	0.125	2	2	406.25	/		Anox Fractio	n	0.25				
Aerobic Fraction		0.675	0.675	3	3	1462.5 /		1	Aer Fraction	n	0.700	350	Aer 1	350	0.14
Post Anoxic Fracti	on	0.125	0.125	2	2	406.25		1	Post Anox		0		Aer 2	350	0.14
Reair Fraction		0.025	0.025	1	1	162.5		1	Reair		0		Aer 4	350	0.14
						/		1	Average						0.14
					22	/		1	Ŭ						
Maximum Biofilm SSA	for media	500			Enter the	Biofilm Spec	cific Surface	Area (SS	SA) for media	at 100% fill	(media c	occupies	the entire	e tank vo	lume) - value
Biofilm Vol Fraction at	100% Fill	0.2				Enter the bi	ofilm volum	e fraction	(BVF) at 100	% fill for an	average	biofilm th	nickness	- this is t	ne fraction of a
Biofilm SSA as app	lied	350			/		Ente	r the biofi	m SSA as ap	plied (IF bio	ofilm SSA	is differe	ent in diff	erent cel	ls, this value
Media Fill Volume Fra	ction	0.7			1			2							
Biofilm Vol Fraction as a	nplied	0.14		/			shell of the	media (its	frame or hollo	w cylinder)	Its va	alue is cor	mputed b	ased on t	ne Biofilm SSA
	phoa			/											
Unit Conversion Factor, UCF, to compute t	otal media surface	1	If reactor vo	ume is in m3	enter 1 if	volume is in l	enter 1000	1	-						
It is a conversion factor for using specific surf	ace area which is in m2/	/m3			, ontor 1, 1			l i	-						
			/	/			1		-						
	1		/			1	-					1			
	1	1		r	1	1	1	1	1	1	1	1	1	1 1	
		1				1		1		1	1	1	1		
Table 3	1		/	T	1	1		1	1	1	1	1	1	I 1	1
Modia Specific Surface Area, if o	m2/m3	350													
		330		Vaa -1 Na -	. 0		1		-						
IS SSA OF Media same in an cens ex		1 Manairan	Oharah	105 = 1, 100 =	0				-						
Select 1 If SSA is to be varied in a Da	ata Table function	vvarning	Спеск			1				l	<u> </u>	I			
									_						
1															
Table 4	Us	er enters volumes ma	nually in eac	h cell, can us	e the value	es generated b	y the Comp	utational as	sistant and co	py them to a	naerobic,	anoxic, a	erobic, po	ost anoxic	and reair cells
Volume of Cells of Re	e m3 or L		162.5	162.5	406.25	406.25	1462.5	1462.5	1462.5	406.25	406.25	162.5	0	0	
Volume of Cell (do not enter	m3 or L	6500	163	163	406	406	463	1463	1463	406	406	163	0	0	
		-	-	-		-			-	-		-			
Table 5 ified Media Spec	ific Surface Area		0	0	325	325	\$ 400	400	400	325	325	325	325	325	
Media specific surface	e m2/m3		0	0	350	350	350	350	350	350	350	350	350	350	
Biofilm Volume Fraction	(BVF)	0.14	0.00	0.00	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	
	· /														

4	6 Monitor su	ICCOSSIVA TUNS	for signs of compu	tational instabilit	v								1	1	T	1	(
					y. I										+		
6.	The fellow	l ing ara good it	I ndiantara of comput	l Intional instability	I v In Shoot	I Booulto F			L						<u>+</u>		
06		ing are good in			y. In Sheet			,							──		i
	The value	of effluent NO.	3N in the first row is	s different from si	uccessive i	rows (in ste	eady stat	e mode)	1						───	<u> </u>	l
	The NH4N	in different row	ws are different												<u> </u>		L
					-	\sim				_	-		-				
able 9: Hourly	Simulation																
	Time of	Ratio		Time Step	Flow		Second	ary Effluent									
	Day	of Inst Flow		/		Eff SCODbio	Eff NH4N	Eff UnOxN	Eff NO3N								
		to Avg Flow			m3/d		r	ng/L									
hours	hours	0	0	1	17471.2	15.0	* 1.2	4.7	3.5						1		
7	7	1	0	1	17471.2	17.6	1.2	4.7	2.9						1		
8	8	1,101083497	0	2	17471-2	17.6	1.3	4.7	2.9						1		
9	9	1,199668597	0	3	17471.2	17.6	1.2	4.7	2.9				1	1	1		
10	10	1 2975783	0	4	17471 2	17.6	11	47	2.9						1		
10	10	1 108081753	ů	-	17471.2	17.6	1.1	4.7	2.0						<u> </u>	-	
		1.130301733		5	1 11 71 1.2	17.0	1.2	7.7	2.0	1				•	i		
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	lf upor proc	Doo Shift EO to		the "Regulte Rel (Q 4" oboot	t the velue	of the NO	N2NL profile in	the lost fr						┼───	┣───	i
	il user pres	ses Shirt F9 to	recomputes value on		5 & 4 Sheel	t, the value	of the NO	isin prome ir	1 the last le	ew cells jum	ps around	<u> </u>			──	┣───	i
	_															<u> </u>	l
61	bin the Tab	le "DO and Aer	ation" in the Sheet	"Results Rel 3 &	4"										1		
			The last aerobic cell ma	ay show "Check for S	tability" instea	ad of OK. This	implies the	at value of oxy	ygen require	ment compute	ed by succe	ssive iteratio	ns has no	ot converg	ed to with	hin 10 pe	rcent.
O and Aeration	n					/											
	For aerated	cells in reactor															
	ation Capa	kg/d	as DO	0	0	0	0	2350	2350	1750	0	0	400	0	0		
															1		
															1		
	d to mainta	ka/d		0	0	0	0	1220	1156	948	0	0	229	0	0		
	DO injected			-										-			
	D C IIIJOOLOG		<u>.</u>				not		•		not	not					
	Decision red	narding quantity	of DO being transfer	not applicable	not	not	annlicah	ок	OK	ок	annlicahl	annlicabl	ок	ок	ок		
	Decision reg	garang quantity .	or bornig transfer	not applicable	applicable	applicable	le	OIN		OR	e	e	on	U.N.	ÖN		
							Not			X	Not	Not		Not	Not		
	Is DO setpo	int OK based on a	aeration capacity	Not Applicable	Not	Not	Applica	Yes	Yes	Check for	Applicabl	Applicabl	Yes	Applica	Applic		
					Applicable	Applicable	ble			stability	e	e		ble	able		
	7In some ir	nstances, it ma	v take more than 10	0 iterations to st	abilize.	1	1	1		1	1	1	1	1	1	1	
		Press F9 agai	in to run another 10	0 iterations Doe	s the stahi	lity improv	as ner (6a or 6b2	f so conti	nue pressi	ng F9 a fe	w more ti	mes		-	1	1
	1								1 00, 00111					T	+	┿───	1
		I		L			+								+	—	-
	8 Save file p	periodically wh	lie computations ar	e stable.		<u> </u>		<u> </u>	L				 		┿───	—	4
		If computatio	nal instability has o	ccurred, go back	to a saved	I file and m	ake smal	ler change	s between	succcessi	ve iteratio	ons.				\bot	1
	9 To achieve	e a stable set of	values in when the c	omputation is swit	ched from s	steadv state	to dynam	nic. one may	/ have to ir	nitially minim	nize the va	riation in h	ourly flo	WS.	Т	T	1
		The varation can	be increased gradually					_,			10		1		+	1	1
		The varacion can	so moreased gradually.				1	1	1				1		+	1	1
	0 16		l de en @e		1		+	+	+						+	┼───	4
10	ulii problem	i persists, ema	ii asen@aquitas.co	m or call Aquitas													

Changing the Nu	mber of Cells in	Operation						
1. Sheet: Volume and	Media Configuration	- Change the configuration of	f the cells and the location	of the recycles				
	When rec	ycle flow is entering the cell	enter it in the cell to the left	ft of the box;				
	When rec	ycle flow is being removed f	rom the cell, enter it in the o	cell to the right of the box				
**Unless minimum thresh	old volume fraction in Ce	II F18 Sheet "Volume + Media (config" is zero, configure reacto	r with minimum of 1 anaerob	c anoxic aerobic post ano:	kic and reaeration: designate (offline cells as offline (eq. a	anaerobic offl
			Brosses LICT Post DN					
Table 1		Influent flow;	FIOLESS OCT FOSLDN	For higher computational stal	bility, RAS for MBBR and BAF is s	et to a threshold specfied in cell P59	 One could red 	duce the nitrate reycle r
RAS / MBRrecycle	0.5	for BAFs & MBBRs, enter RAS of 0						
NR Media Rec						i		
Future	0.000							
Release 3 & 4								
Table 2 (Cell # & Condition	1 Anaerobic Offline	2	Anaerobic Offline	3	Anoxic	4	Aerobic
Reactor influent	1.00			>				
MLR	0.00				0.500	0.00		
Media Rec					1.00	-		
Supp Carbon	F							
— NPW from plant effluer	nt/PW addition							
	·	5 Aerobic	6	Aerobic		Post Anoxic		Reperation
Reactor Initiaent				Aerobic				Reaelation
RAS / MBRrecycle				∓ ≨‡	€	€	_ _€	
NR Media Rec				(1.00			⊞ €	
Future Supp Carbon				田田田	0.0001	<u> </u>		王
NPW from plant effluent/	PW addition		Ŧ	E T		E -	<u> </u>	<u> </u>
Mixed Liquor Flow								
		9 Reaeration Offline	10	Reaeration Offline	11	Reaeration Offline	12	Reaeration Offline
RAS / MBRrecycle								
MLR NR								
Media Rec Future					Data and the second			
Supp Carbon			_ ₽	**				
Mixed Liquor Flow	NyPW addition	<u>→</u> →		→		and the second s		
							and the second second second	
Shown below is the same o	onfiguration. It is represente	ed as series of Cells in a Table						
SUMMARY								
	Anaerobic	Anaerobic		Post Reaeratio Reserve	ion Reservation Reserv	eratio Reaeratio		
	Offline	Offline Anoxic Aerob	c Aerobic Aerobic	Anoxic n Offline	Offline n Of	fline n Offline Secondary		
Reactor Influent	1.00 R1	0.00 -R3 0.00 R3 0.00 R	4 0.00 R3 R5 0.00 R6	6 0.00 R70.00 R8 0.00	R9 0.00 R10 0.00	R11 0.00 R12 0.00		
RAS / MBRrecycle	0.00	0.00 0.50 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00	0.00 0.00		(0.50	
NR Media Rec	0.00	0.00 1.00 0.00 0.00	0.00 0.00	(1.00) 0.00 0.00 0.00	0.00 0.00			
Future Supp Carbon	0.0000	0.00 0.000 0.000 0.000	0.00 0.0000	0.00 0.000 0.000 0.0000 0.0000	0.00 0.000	0.00 0.0000 0.0000		
					╡ ↓ [_	\$⊢₹⊨₫ [

L. VOIUIIIe a	and Media C	onfiguration - Ente	er the Values represe	nting the conditions in	n the new cell	configuration	n. This is us	ed to represer	nt anaerobic	, anoxic and a	aerobic cond	itions for BE	EPR, etc.		- 11			
	Cell Number	of Reactor	/		1	2	3	4	5	6	7	8	Q	10	11	12		C I
	Cen Number (or Reactor						1 7	J	v		•	Poporati	Poporati	Poporati	Poporati		
Г		1	/	1			Π	π	-	-	1	Π	Reaelau	Reaerau	Reaerau	Reaerati	-	
	Table 1	Condition	/		Anaerobic	Anaerobic	Anoxic	Aerobic	Aerobic	Aerobic	Post	Reperation	on	00	00	00	- 11	
	Table I	Condition			Offline	Offline	Alloxic	Aerobic	Aerobic	Aerobic	Anoxic	Reactation	Offline	Offline	Offline	Offline		
		Ana = 1	¥		1	1	2	2	3	3	4	3	3	3	3	3		
	Pre Anx = 2	, Aer = 3, Post Anx :	= 4, Reair = 3															
											L L							
: Volume a	and Media C	onfiguration - Mak	e sure that the volum	ies shown for individu	ial cells in thi	s row and the	total volum	e represent th	e new confi	guration.								
			\				/											
			2				/											
	Table 2	Media Process		IFAS	8		Refer to the	User Manual on s	steps to be follo	wed to change th	ne volume in con	cert with change	es in the Av	verage Daily	Flow.	_		
								If the specified	d <u>volume</u> is 0,	it is reset to the	value of the th	reshold showr	n in cell F1	8				
						Com	putational Assis	tant			Equivalent Volur	me Fractions for	Use in Rea	actor Config	uration for R	eleaes 2		
						# of cells		Volume per cell				V	ol Fractio	ia Biofilm S	SA		BVF Cell	
_	Total Volu	ume of Cells in	m3 or L	4375	4375			m3 or L	4375			u		r -	4			
		Anaerobic Fraction		0,15	0.15	2	2	328.125			Anaer Fraction		0.15					.
-		Anoxic Fraction		0.125	0.125	2	2	2/3.43/5			Anox Fraction		0.25	205	A == 4	205	0.42	Includes
-		Aerobic Fraction		0.575	0.575	3	3	030.0410007			Aer Fraction		0.600	325	Aer 1	325	0.13	Balaasa
		Post Anoxic Fraction		0.125	0.125	2	2	2/3.43/5			Post Anox		0		Aer 2	325	0.13	Release
		Real Fraction	tion in some	0.025	0.025	-		109.375			Average		0		Aer 4	325	0.13	_
	initia in thresh	fold for volume frac	tion in zone	1	0.0000			/	~		Average						0.13	
-	Maximi	m Biofilm SSA for m	odia	500		1	h	/			11 1							
	Biofilm	Vol Fraction at 100%	Fill	0.2	1	1	ii	I Enter the big	film volume	fraction (BVF)	at 100% fill fo	or an average	biofilm th	nickness -	this is the	fraction of	f activated slu	
	Bi	iofilm SSA as applied		325	325	1	11		Enter the bio	film SSA as appli	ied (IF biofilm SS	SA is different in	different ce	ells, this valu	le dets	indealer e		
	Med	dia Fill Volume Fraction		0.65		I	r" i	1	This media fil	volume traction	is the fraction of	empty tank volu	ume that is	occupied by	/ the outer s	nell of the		I I
	Biofilr	n Vol Fraction as applie	ed	0.13				<i>i</i> i		1					T			·
							1 1			Ì			T .		T	Г	Π	
Unit Conv	ersion Factor,	UCF, to compute tota	I media surface area	1 1	If reactor volume	is in m3, enter 1,	if volume is in	, enter 1000				l					11	
It is a conve	ersion factor for	using specific surface a	area, which is in m2/m3			201	1	1										
						N N	1								1			
						1	/											
							/											
	Table 3					X										-		
	Media Specific	c Surface Area, if con	m2/m3	325 *			/							<u> </u>				
SSA of med	lia same in all o	cells except anaerobio	cells		Yes =1, No	>0				<u> </u>	u	<u>ц ц</u>				L		
Select 1 if SS	SA is to be varie	ed in a Data Table funct	tion	OK Check	1	120	W				-11		n					
					/		~											
														/				_
Table 4	-	_		Isor optors volumos monutel	lly in each cell or	n use the values	denorated by t	o Computational	accistant and a	ony them to anot	archic anoxic c	arabic post and	vic and rea	ir colls	-			
Table 4		Volume of Cells of	Pea m3 or l	Jser enters volumes manual	iy in each cell, ca	n use the values	328 125	273 A375	273 A375	938 54167	838 5416667	938 54167	7 273	1375 CEIIS	73 /39	100 375		0 11
	Maluma of	Coll (do not optory)				20.125	320.123	213.4375	213.4375	030.34107	030.3410007	030.34107	213.		070	103.375	U	•
	v plume of	Ceii (do not entêr V	m3 or L	4375		328	JZØ	2/3	2/3	838	838	839	2	13	2/3	109	0	U

4. Sheet: Compu	utational Thres	holds: Make sure	that the cells where de	nitrification is driver	h by the seco	nd substrate,	as in post	DN and reaera	ation cells, i	s designated	by a value	of 1				
The cells with pre	-DN kinetics are	located upstream of	of the cell to which the se	cond carbon is addec	l as a source f	or post denitri	fication. The	ey have a value	of 0			T				
		1			1		Π	Í								
	1															
Cell Number of Rea	ctor			1	2	3	4	5	6	7	8	9	10	11	12	SC
					Annahia	,		, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,		Ů	Decembing	Reaerati	Reaerati	Reaerati	
Polosso 3	and 4			Anaorohia Offlina	Anaerobic	Anovio	Aarohia	Agrobio	Aorobio	Post Apovio	Reportion	Reaeration	reaciau	neaciali	on	
itelease s	anu 4			Anaelobic Online	Offline	ANUXIC	Aerobic	ACIODIC	Aerobic	F USL ANUXIC	Reaeration	Offline	011	UI	UI	
									2				Offline	Offline	Offline	
Table 3	П	1			1			1		1	1	T	1			r
Condition for donit	kineties, pro or	nost DN kinoti	Bro = 0 $Boot = 1$	0	0	0		0	0	1	1	4	1	4	4	
Condition for define	kinetics, pre or	post Div killeti	F10 = 0, F031 = 1	0	U	U U			0 -							
		1								•		1				-
Table 1		Reco	ommend that the user not cha	inge these values until the	e model for a plar	nt has been refine	ed									
Computational Thres	sholds		Effluent	than threshold, the mode	el sets concentra	tion to be equal to	o threshold	2.5				1				
	SCOD	mg/L	1	2	2	2	2	2	X	1	1	1	1	1	1	
	NH4N	mg/L	0.1	1	1	1	1	1	0.1 🎽	0.1	0.1	0.1	0.1	0.1	0.1	
	NO3N	mg/L	0.01	0.05	0.05	0.05	0.05	0.05	0.05	0.01	0.01	0.01	0.01	0.01	0.01	
							1743									
5. Optional item:	: Enter values f	or computational	thresholds based on th	he new cell configura	ation		/						1			
	The lowest va	lues of threshold fr	or SCODbio and NH4N et	ould be in the last an	robic cell			11 1	1	1		1	1	li 👘		
H	The lowest value	as of threshold for NO	3N may be in the post apovic	coll. This is still being stu	diad and the ree	mmondation ma	who refined		U.				1			
H	The lowest value	se or uncontruit in NOC	or and be in the post anothe	som i mono sun berrig stu	aloa ana me reu		y be renned.					1	<u> </u>	H		╂───┨
6 Shoot: DO and	d Agration: The	values entered in	the colle in this row e	hould roflact whatha	r agration do	vicos aro ono	rating or n	ot in those col	lle							
0. Sheet. DO and	Aeration. The	values entereu il	The cens in this low s	nould reflect whethe		vices are ope	ating of h	or in these cer	115					l.		
	The user nee	ds to specify an ini	tial guess of DO values i	n the unaerated cells	and the DO s	etpoints for the	e aerated ce	ells. Those for	the aerated	cells are chec	ked against f	the capacity	of the			
	aeration devi	ce.				1										
1		The user enters the	capacity of the aeration d	evice in the aerobic cell	S											
			The upor optors amount	t of owngon diffusing i	from the liqu	id ourfood, if a	for the	upperated calls	This is a fu	notion of DO I	ovel in the u	an arotad call				
			The user enters amount	t or oxygen unrusing i	inflom the liqu	ilu sullace, il a	iny, tor the t		. 1115 15 a 10			laerateu cen	,			
			auntopa turbulance linu	A terms exeture and D		and also us the	linuid durfo									
1			surface turbulence, liqu	id temperature and D	O in the air ph	ase above the	liquid surfa	ice.	0	1				n		
I	Table 2		surface turbulence, liqu	id temperature and D	O in the air ph	ase above the	liquid surfa	ice.	1				Becerati	Bagarati	Decemti	Becerati
1	Table 2		surface turbulence, liqu	id temperature and D	O in the air ph	Anaeropic	liquid surfa	ice.			Post		Reaerati	Reaerati	Reaerati	Reaerati
U	Table 2	Condition	surface turbulence, liqu	d temperature and D	O in the air ph	Anaerobic	Anoxic	Aerobic	Aerobic	Aerobic	Post	Reaeration	Reaerati on	Reaerati on	Reaerati on	Reaerati on
II .	Table 2	Condition	surface turbulence, liqu	d temperature and D	O in the air ph Anaerobic Offline	Anaerobic Offline	Anoxic	Aerobic	Aerobic	Aerobic	Post Anoxic	Reaeration	Reaerati on Offline	Reaerati on Offline	Reaerati on Offline	Reaerati on Offline
	Table 2 Is aerat	Condition	surface turbulence, liqu g in cell	temperature and D Yes =1, No = 0	O in the air ph Anaerobic Offline 0	Anaerobic Offline 0	Anoxic	Aerobic	Aerobic 1	Aerobic 1	Post Anoxic 0	Reaeration 1	Reaerati on Offline	Reaerati on Offline	Reaerati on Offline 1	Reaerati on Offline 1
	Table 2	Condition	surface turbulence, liqu g in cell	Ves =1, No = 0	O in the air ph Anaerobic Offline 0	Anaerobic Offline 0	Anoxic	Aerobic	Aerobic 1	Aerobic 1	Post Anoxic 0	Reaeration	Reaerati on Offline 1	Reaerati on Offline 1	Reaerati on _{Offline} 1	Reaerati on Offline 1
1	Table 2	Condition	surface turbulence, liqu g in cell	Xtemperature and D Yes =1, No = 0	O in the air ph Anaerobic Offline 0	Anaerobic Offline 0	Anoxic	Aerobic	Aerobic 1	Aerobic 1	Post Anoxic 0	Reaeration	Reaerati on Offline	Reaerati on Offline	Reaerati on ^{Offline}	Reaerati on ^{Offline} 1
	Table 2	Condition	g in cell	Ves =1, No = 0	O in the air ph Anaerobic Offline 0	Anaerobic Offline 0	Anoxic	Aerobic	Aerobic 1	Aerobic 1	Post Anoxic 0	Reaeration 1	Reaerati on Offline 1	Reaerati on Offline 1	Reaerati on ^{Offline} 1	Reaerati on offline 1
	Table 2	Condition ion device operatin	surface turbulence, liqu g in cell	Ves =1, No = 0	O in the air ph Anaerobic Offline 0	Anaerobic Offline 0	Anoxic	Aerobic	Aerobic 1	Aerobic 1	Post Anoxic 0	Reaeration 1	Reaerati on Offline 1	Reaerati on offline 1	Reaerati on offline 1	Reaerati on offline 1
	Table 2	Condition ion device operatin	g in cell	Yes =1, No = 0 en demand in the reactor	O in the air ph Anaerobic Offline 0	Anaerobic Offline 0		Aerobic	Aerobic 1	Aerobic 1	Post Anoxic 0	Reaeration 1	Reaerati on offline 1	Reaerati on Offline 1	Reaerati on offline 1	Reaerati on offline 1
	Table 2 Is aerat	Condition ion device operatin Thresholds for Accura Unaerated cell	g in cell	Yes =1, No = 0 Yes and in the reactor	O in the air ph Anaerobic Offline 0 will be within x p	Anaerobic Offline 0 ercent of supply		Aerobic	Aerobic 1	Aerobic 1	Post Anoxic 0	Reaeration 1	Reaerati on Offline 1	Reaerati on offline 1	Reaerati on offline 1	Reaerati on offline 1
	Table 2 Is aerat	Condition ion device operatin Thresholds for Accura Unaerated cell Aerated cell	g in cell	Yes =1, No = 0 Yes =1, No = 0 en demand in the reactor 20% 10%	O in the air ph Anaerobic Offline 0	Anaerobic Offline Offline		Aerobic	Aerobic 1	Aerobic 1	Post Anoxic 0	Reaeration 1	Reaerati on Offline 1	Reaerati on Offline 1	Reaerati on offline 1	Reaerati on offline 1
	Table 2 Is aerat	Condition ion device operatin Thresholds for Accur Unaerated cell Aerated cell DO setpoint estim	g in cell acy of DO setpoint - the oxyg ated for anaerobic & ano	Yes =1, No = 0 Yes =1, No = 0 en demand in the reactor 20% 10% xic, specified for aero	O in the air ph Anaerobic Offline 0 will be within X p	Anaerobic Offline Offline ercent of supply		Aerobic	Aerobic 1	Aerobic 1	Post Anoxic 0	Reaeration 1	Reaerati on Offline 1	Reaerati on Offline 1	Reaerati on offline 1	Reaerati on offline 1
	Table 2 Is aerat	Condition ion device operatin Thresholds for Accura Unaerated cell Aerated cell DO setpoint estim	g in cell acy of DO setpoint - the oxyg ated for anaerobic & ano	Yes =1, No = 0 Yes =1, No = 0 en demand in the reactor 20% 10% xic, specified for aero mg/L	O in the air ph Anaerobic Offline O will be within X p bic	Anaerobic Offline 0		Aerobic	Aerobic 1	Aerobic 1	Post Anoxic 0	Reaeration 1 5	Reaerati on Offline 1	Reaerati on Offine 1	Reaerati on offline 1	Reaerati on offline 1
	Table 2 Is aerat	Condition ion device operatin Thresholds for Accura Unaerated cell Aerated cell DO setpoint estim For unaerated cells	g in cell g in cell acy of DO setpoint - the oxyg ated for anaerobic & ano in reactor	Yes =1, No = 0 Yes =1, No = 0 en demand in the reactor 20% 10% xic, specified for aero mg/L	O in the air ph Anaerobic Offline 0 will be within X-g	Anaerobic Offline 0 ercent of supply 2	Anoxic 0	Aerobic	Aerobic 1	Aerobic 1	Post Anoxic 0	Reaeration 1 5	Reaerati on ottine 1	Reaerati on Offine 1	Reaerati on ottline 1	Reaerati on Offline 1
	Table 2 Is aerat 2 3 4 5 6	Condition ion device operatin Thresholds for Accur Unaerated cell Aerated cell DO setpoint estim For unaerated cells DO entrainment by	g in cell acy of DO setpoint - the oxyg ated for anaerobic & ano in reactor diffusion from surface	en demand in the reactor 20% 10% xic, specified for aero mg/L ko/4	O in the air ph Anaerobic Offline 0 will be within X of bic 2	Anaerobic Offline 0 ercent of supply 2	Anoxic 0	Aerobic 1 3	Aerobic 1	Aerobic 1	Post Anoxic 0	Reaeration 1	Reaerati on offline 1	Reaerati on ottine 1	Reaerati on offline 1	Reaerati on offine 1
1	Table 2 Is aerat 1 2 3 4 5 6	Condition ion device operatin Thresholds for Accura Unaerated cell Aerated cell DO setpoint estim For unaerated cells DO entrainment by o	g in cell g in cell acy of DO setpoint - the oxyg ated for anaerobic & ano in reactor diffusion from surface	A temperature and D Yes =1, No = 0 Provide the sector 20% 10% xic, specified for aero mg/L kg/d	O in the air ph Anaerobic Offline 0 will be within X p bic 2 0	Anaerobic Offline 0 ercent of supply 2 0	iiquid surfa	Aerobic 1 3 0	Aerobic 1 4	Aerobic 1	Post Anoxic 0	Reaeration 1	Reaerati on office 1	Reaerati on Offline 1	Reaerati on offline 1	Reaerati on offline 1
1	Table 2 Is aerat	Condition ion device operatin Thresholds for Accura Unaerated cell DO setpoint estim For unaerated cells DO entrainment by o	g in cell g in cell acy of DO setpoint - the oxyg ated for anaerobic & ano in reactor diffusion from surface	en demand in the reactor 20% 10% xic, specified for aero mg/L kg/d	O in the air ph Anaerobic Offline 0 will be within Ap	Anaerobic Offline 0 ercent of supply 2 0 Lower	ilquid surfat	Aerobic 1 3 0 not	Aerobic 1 4 4 0 not	Aerobic 1 4 0 not	Post Anoxic 0 0.3 20	Reaeration 1	Reaerati on Offline 1	Reaerati on Offine 1	Reaerati on Ottine 1	Reaerati on Offline 1
	Table 2 Is aerat 2 3 4 5 6 7	Condition ion device operatin Thresholds for Accur Unaerated cell Aerated cell DO setpoint estim For unaerated cells DO entrainment by o Check on calc: Is	g in cell g in cell acy of DO setpoint - the oxyg ated for anaerobic & and in reactor diffusion from surface estimated setpoint OK fo	en demand in the reactor 20% 10% xic, specified for aero mg/L kg/d r unaerated reactors	O in the air ph Anaerobic Offline 0 will be within X p bic 2 0 Lower estimate of	Anaerobic Offline Offline O ercent of supply 2 Lower estimate of	Anoxic 0 0.3 20 0K	Aerobic 1 3 0 not applicable	Aerobic 1 4 0 not applicable	Aerobic 1 4 0	Post Anoxic 0 0	Reaeration 1	Reaerati on Omine 1	Reaerati on Office 1	Reaerati on ottine 1 5 5 0 not applica	Reaerati on offline 1 5 5 0
	Table 2 Is aerat 1 2 3 4 5 6 7	Condition ion device operatin Thresholds for Accura Unaerated cell Aerated cell DO setpoint estim For unaerated cells DO entrainment by Check on calc: Is	surface turbulence, liqu g in cell acy of DO setpoint - the oxyg ated for anaerobic & ano in reactor diffusion from surface estimated setpoint OK for	Yes =1, No = 0 Yes =1, No = 0 en demand in the reactor 20% 10% xic, specified for aero mg/L kg/d r unaerated reactors	O in the air ph Anaerobic Offline 0 will be within to bic 2 0 Lower estimate of po	Anaerobic Offline Offline O ercent of supply 2 Lower estimate of po	Anoxic 0 0 0 0 0 0 0 0 0 0 0 0 0	Aerobic 1 3 0 not applicable	Aerobic 1 4 0 not applicable	Aerobic 1 4 0 not applicable	Post Anoxic 0 0 0.3 20 OK	Reaeration 1 1	Reaerati on ottiine 1	Reaerati on Ottine 1	Reaerati on Office 1	Reaerati on offline 1
	Table 2 Is aerat	Condition ion device operatin Thresholds for Accura Unaerated cell DO setpoint estim For unaerated cells DO entrainment by Check on calc: Is of	g in cell g in cell acy of DO setpoint - the oxyg ated for anaerobic & ano in reactor diffusion from surface estimated setpoint OK fo	Yes =1, No = 0 Yes =1, No = 0 en demand in the reactor 20% 10% xic, specified for aero mg/L kg/d r unaerated reactors	O in the air ph Anaerobic Offline 0 will be within the bic 2 0 Lower estimate of po	Anaerobic Offline 0 ercent of supply 2 Lower estimate of po	ilquid surfat	Aerobic 1 3 0 not applicable	Aerobic 1 4 0 not applicable	Aerobic 1 4 0 not applicable	Post Anoxic 0 0 0.3 20 OK	Reaeration 1	Reaerati on Office 1 5 5 0 not applicab	Reaerati on Office 1 5 5 0 not applicab	Reaerati on ottine 1	Reaerati on ottine 1
	Table 2 Is aerat 1 2 3 4 5 6 7 Table 4	Condition ion device operatin Thresholds for Accur Unaerated cell Aerated cell DO setpoint estim For unaerated cells DO entrainment by o Check on calc: Is o For averated cells in	surface turbulence, liqu g in cell acy of DO setpoint - the oxyg ated for anaerobic & ano in reactor diffusion from surface estimated setpoint OK fo	en demand in the reactor 20% 10% xic, specified for aero mg/L kg/d r unaerated reactors	O in the air ph Anaerobic Offline 0 will be within X of bic 2 0 Lower estimate of bo	Anaerobic Offline 0 ercent of supply 2 Lower estimate of po	Anoxic 0 0.3 20 0K	Aerobic 1 3 0 not applicable	Aerobic 1 4 0 not applicable	Aerobic 1 4 0 not applicable	Post Anoxic 0 0	Reaeration 1 1	Reaerati on Ottime 1	Reaerati on office 1 5 5 0 not applicab	Reaerati on ottiine 1	Reaerati on Offline 1
	Table 2 Is aerat	Condition ion device operatin Thresholds for Accura Unaerated cell Aerated cell DO setpoint estim For unaerated cells DO entrainment by Check on calc: Is a Check on calc: Is a Check on calc: Is a For aerated cells in	surface turbulence, liqu g in cell acy of DO setpoint - the oxyg ated for anaerobic & ano in reactor diffusion from surface estimated setpoint OK for reactor	A temperature and D Yes =1, No = 0 Provide the sector 20% 10% xic, specified for aero mg/L kg/d r unaerated reactors	O in the air ph Anaerobic Offline 0 will be within to p bic 2 0 Lower estimate of po	Anaerobic Offline Offline Offline Offline Offline Control of supply 2 Control of supply Control of supply Control of supply Control of supply	anoxic 0 0 0 0 0 0 0 0 0 0 0 0 0	Aerobic 1 3 0 not applicable	Aerobic 1 4 0 not applicable	Aerobic 1 4 0 not applicable	Post Anoxic 0 0 0.3 20 OK	Reaeration 1 1 5 0 not applicable	Reaerati on ottine 1	Reaerati on ottine 1	Reaerati on Ottime 1	Reaerati on offine 1
	Table 2 Is aerat 1 2 3 4 5 6 7 Table 4 1 2	Condition ion device operatin Thresholds for Accurr Unaerated cell DO setpoint estim For unaerated cells DO entrainment by Check on calc: Is For aerated cells in Aeration Capacity	g in cell g in cell acy of DO setpoint - the oxyg ated for anaerobic & ano in reactor diffusion from surface estimated setpoint OK fo reactor kg/d	en demand in the reactor 20% 10% xic, specified for aero mg/L kg/d r unaerated reactors as DO	O in the air ph Anaerobic Offline 0 will be within the bic 2 0 Lower estimate of po 0	Anaerobic Offline 0 ercent of supply 2 Lower estimate of po 0	ilquid surfa	Aerobic 1 3 0 not applicable 2500	Aerobic 1 4 0 not applicable 2350	Aerobic 1 4 0 not applicable 2350	Post Anoxic 0 0 0.3 20 0K	Reaeration 1	Reaerati on otime 1 5 5 0 not applicab le 0	Reaerati on Office 1 5 5 0 not applicab Ie	Reaerati on ottine 1	Reaerati on ottine 1 1 5 5 6 6
	Table 2 Is aerat 1 2 3 4 5 6 7 Table 4 1 2 3 4 5 6 7 1 2 2 2	Condition ion device operatin Thresholds for Accur Unaerated cell Aerated cell DO setpoint estim For unaerated cells DO entrainment by o Check on calc: Is o Check on calc: Is o For aerated cells in Aeration Capacity	surface turbulence, liqu g in cell acy of DO setpoint - the oxyg ated for anaerobic & ano in reactor diffusion from surface estimated setpoint OK fo reactor kg/d	en demand in the reactor 20% 10% xic, specified for aero mg/L kg/d r unaerated reactors as DO	O in the air ph Anaerobic Offline 0 will be within X of bic 2 0 Lower estimate of DO	Anaerobic Offline 0 ercent of supply 2 Lower estimate of po	anoxic 0 0 0 0 0 0 0 0 0 0 0 0 0	Aerobic 1 3 0 not applicable 2500	Aerobic 1 4 0 not applicable 2350	Aerobic 1 4 0 not applicable 2350	Post Anoxic 0 0 0.3 20 0K	Reaeration 1 1	Reaerati on Ottime 1 5 0 0 not applicab b 0	Reaerati on office 1 5 5 0 not applicab 6 0	Reaerati on ottiline 1	Reaerati on Offline 1
	Table 2 Is aerat 1 2 3 4 5 6 7 Table 4 1 2 3 4 5 6 7 Table 4 1 2 3 4	Condition ion device operatin Thresholds for Accura Unaerated cell Aerated cell DO setpoint estim For unaerated cells DO entrainment by o Check on calc: Is o Check on calc: Is o For aerated cells in Aeration Capacity	g in cell g in cell acy of DO setpoint - the oxyg ated for anaerobic & ano in reactor diffusion from surface estimated setpoint OK fo reactor kg/d km/d	A temperature and D Yes =1, No = 0 Present of the reactor 20% 10% xic, specified for aero mg/L kg/d r unaerated reactors as DO	O in the air ph Anaerobic Offline 0 will be within to get bic 2 0 Lower estimate of po 0	Anaerobic Offline Offline O ercent of supply 2 Lower estimate of po	ilquid surfat	Aerobic 1 3 0 not applicable 2500	Aerobic 1 4 0 not applicable 2350 1222	Aerobic 1 4 0 not applicable 2350 772	Post Anoxic 0 0 0.3 20 0K 0 0 0 0 0	Reaeration 1 1 5 0 not applicable 400 2222	Reaerati on Ottime 1	Reaerati on Ottine 1	Reaerati on Offine 1 5 5 0 0 not applica ble 0 0	Reaerati on offline 1
	Table 2 Is aerat 1 2 3 4 5 6 7 Table 4 1 2 3 4 3 4 3 4	Condition ion device operatin Thresholds for Accurr Unaerated cell DO setpoint estim For unaerated cells DO entrainment by Check on calc: Is For aerated cells in Aeration Capacity uired to maintain s	g in cell g in c	en demand in the reactor 20% 10% xic, specified for aero mg/L kg/d r unaerated reactors as DO	O in the air ph Anaerobic Offline 0 will be within Ap bic 2 0 Lower estimate of po 0 0	Anaerobic Offline 0 ercent of supply 2 Lower estimate of po 0	ilquid surfat	Aerobic 1 3 0 not applicable 2500	Aerobic 1 4 0 not applicable 2350 1282	Aerobic 1 4 0 not applicable 2350 778	Post Anoxic 0 0 0.3 20 0K	Reaeration 1	Reaerati on Office 1 5 5 0 not applicab Io 1 0 0 0 0	Reaerati on office 1 5 5 0 not applicab le 0 	Reaerati on ottine 1	Reaerati on offline 1 1 5 5 5 5 5 5 6 0 7 7 0 0 0 0 0 0 0
	Table 2 Is aerat 1 2 3 4 5 6 7 Table 4 1 2 3 4 3 4	Condition ion device operatin Thresholds for Accura Unaerated cell Aerated cell DO setpoint estim For unaerated cells DO entrainment by o Check on calc: Is o Check on calc: Is o For aerated cells in Aeration Capacity uired to maintain s DO injected	surface turbulence, liqu g in cell acy of DO setpoint - the oxyg ated for anaerobic & ano in reactor diffusion from surface estimated setpoint OK fo reactor kg/d	en demand in the reactor 20% 10% xic, specified for aero mg/L kg/d r unaerated reactors as DO	O in the air ph Anaerobic Offline 0 will be within X of bic 2 0 Lower estimate of bo	Anaerobic Offline 0 ercent of supply 2 Lower estimate of po 0	anoxic 0 0 0 0 0 0 0 0 0 0 0 0	Aerobic 1 3 0 not applicable 2500 1318	Aerobic 1 1 4 0 not applicable 2350 1282	Aerobic 1 4 0 not applicable 2350 778	Post Anoxic 0 0 0 0.3 20 0K 0 0 0 0	Reaeration 1 1	Reaerati on Office 1 5 5 0 not applicab b 0 0	Reaerati on office 1 5 5 0 not applicab le 0 0	Reaerati on ottiline 1	Reaerati on Ottime 1
	Table 2 Is aerat 1 2 3 4 5 6 7 Table 4 1 2 3 4 5 6 7 Table 4 1 2 3 4	Condition ion device operatin Thresholds for Accura Unaerated cell Aerated cell DO setpoint estim For unaerated cells DO entrainment by of Check on calc: Is of Check on calc: Is of For aerated cells in Aeration Capacity uired to maintain s DO injected	g in cell g in cell acy of DO setpoint - the oxyg ated for anaerobic & ano in reactor diffusion from surface estimated setpoint OK fo reactor kg/d kg/d kg/d	A temperature and D Yes =1, No = 0 Provide the sector 20% 10% xic, specified for aero mg/L kg/d r unaerated reactors as DO	O in the air ph Anaerobic Offline 0 will be within to get will be within to get bic 0 Lower estimate of po 0 0 0	Anaerobic Offline Offline O ercent of supply 2 C C C C C C C C C C C C C C C C C C	ilquid surfat	Aerobic 1 3 0 not applicable 2500	Aerobic 1 4 0 not applicable 2350 1282	Aerobic 1 4 0 not applicable 2350 778	Post Anoxic 0	Reaeration 1 1 5 0 not applicable 400 222	Reaerati on Ottime 1	Reaerati on ottine 1	Reaerati on ottine 1	Reaerati on offline 1 1 5 5 0 0 5 0 0 0 0 0 0 0 0 0 0
	Table 2 Is aerat 1 2 3 4 5 6 7 Table 4 1 2 3 4 2 3 4 2 3 4 5	Condition ion device operatin Thresholds for Accurr Unaerated cell DO setpoint estim For unaerated cells DO entrainment by 0 Check on calc: Is For aerated cells in Aeration Capacity Uried to maintain s DO injected Decision regardin	g in cell g in c	en demand in the reactor 20% 10% xic, specified for aero mg/L kg/d r unaerated reactors as DO ansferred	O in the air ph Anaerobic Offline 0 will be within to bic 2 0 Lower estimate of po 0 0 0	Anaerobic Offline 0 ercent of supply 2 0 Lower estimate of po 0 0 0	ilquid surfat	Aerobic 1 3 0 not applicable 2500 1318	Aerobic 1 4 0 not applicable 2350 1282 OK	Aerobic 1 4 0 not applicable 2350 778 OK	Post Anoxic 0	Reaeration 1	Reaerati on Office 1 5 5 0 not applicab le 0 0 0 0 0 0	Reaerati on office 1 5 5 0 not applicab le 0 0 0 0 0	Reaerati on ottine 1	Reaerati on offline 1 1 5 5 5 5 5 7 6 0 7 7 0 0 0 0 0
	Table 2 Is aerat 1 2 3 4 5 6 7 Table 4 1 2 3 4 5 6 1 2 3 4 5	Condition ion device operatin Thresholds for Accura Unaerated cell Aerated cell DO setpoint estim For unaerated cells DO entrainment by o Check on calc: Is o Check on calc: Is o For aerated cells in Aeration Capacity Uired to maintain s DO injected	surface turbulence, liqu g in cell acy of DO setpoint - the oxyg ated for anaerobic & ano in reactor diffusion from surface estimated setpoint OK fo reactor kg/d g quantity of DO being tr	en demand in the reactor 20% 10% xic, specified for aero mg/L kg/d r unaerated reactors as DO	O in the air phi Anaerobic Offline 0 will be within X of bic 2 0 Lower estimate of 0 0 0 0	Anaerobic Offline 0 ercent of supply 2 Lower estimate of DO 0 0 0	Inquid surfat	Aerobic 1 3 0 not applicable 2500 1318 OK	Aerobic 1 4 0 not applicable 2350 1282 OK	Aerobic 1 4 0 not applicable 2350 778 OK	Post Anoxic 0	Reaeration 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Reaerati on Ottime 1 5 5 0 not applicab b 0 0 0 0 0 0 0 0 0	Reaerati on office 1 5 5 0 not applicab le 0 0 0 0 0	Reaerati on ottime 1	Reaerati on Offline 1
	Table 2 Is aerat 1 2 3 4 5 1 2 3 4 5 5	Condition ion device operatin Thresholds for Accura Unaerated cell Aerated cell DO setpoint estim For unaerated cells DO entrainment by of Check on calc: Is of Check on calc: Is of For aerated cells in Aeration Capacity Urired to maintain s DO injected Decision regardin	g in cell g in cell g in cell acy of DO setpoint - the oxyg ated for anaerobic & ano in reactor diffusion from surface estimated setpoint OK fo reactor kg/d kg/d g quantity of DO being tr	en demand in the reactor 20% 10% xic, specified for aero mg/L kg/d r unaerated reactors as DO ansferred	O in the air ph Anaerobic Offline 0 will be within k p bic 2 0 Lower estimate of 0 0 0 0 0 0 0	Anaerobic Offline Offline O ercent of supply 2 C O Lower estimate of DO O O O O O O	Ilquid Surfar Anoxic 0 0.3 20 0K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Aerobic 1 1 3 0 not applicable 2500 1318 OK	Aerobic 1 1 4 0 not applicable 2350 1282 OK	Aerobic 1 4 0 4 0 2350 778 OK	Post Anoxic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Reaeration 1 1 5 0 0 not applicable 222 0 K	Reaerati on Ottime 1 3 3 4 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Reaerati on ottine 1	Reaerati on ottine 1	Reaerati on offline 1
	Table 2 Is aerat 1 2 3 4 5 1 2 3 4 5 6	Condition ion device operatin Thresholds for Accur Unaerated cell DO setpoint estim For unaerated cells DO entrainment by Check on calc: Is For aerated cells in Aeration Capacity Uired to maintain s DO injected Decision regardin Is DO setpoint OK	g in cell g in cell acy of DO setpoint - the oxyg ated for anaerobic & ano in reactor diffusion from surface estimated setpoint OK fo reactor kg/d g quantity of DO being tr based on aeration capad	en demand in the reactor 20% 10% xic, specified for aero mg/L kg/d r unaerated reactors as DO ansferred	O in the air ph Anaerobic Offline 0 will be within to bic 2 0 Lower estimate of 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Anaerobic Offline 0 ercent of supply 2 0 Lower estimate of po 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ilquid surfa Anoxic 0 0.3 20 0K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Aerobic 1 1 3 0 not applicable 2500 1318 OK Yes	Aerobic 1 4 0 not applicable 2350 1282 OK Yes	Aerobic 1 1 4 0 1 2 1 2 2 3 50 7 778 0 K Yes	Post Anoxic 0	Reaeration 1	Reaerati on office 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Reaerati on office 1 5 5 0 not applicab te 0 0 0 0 0 0 0 0 0 0 0 0 0	Reaerati on ottine 1	Reaerati on ottine 1 5 5 0 5 5 0 2 2 2 2 2 2 2 0 0 0 2 2 2 2

