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Abstract 
In the European Union (EU) countries buildings consume 40% of the energy and cause 36% of CO2 emissions. 

The thermal information of facades and roofs are important for building inspection and energy saving. Texturing 

the existing three-dimensional (3D) building models with infrared (IR) images enriches the model database and 

enables analysis of energy loss of buildings.  

 

The main purpose of the presented thesis is to investigate methods for automatic extraction of the IR textures for 

roofs and facades of the existing building model. The correction of the exterior orientation parameters of the IR 

camera mounted on mobile platform is studied. The developed method bases on a point-to-point matching of the 

features extracted from IR images with a wire frame building model.  

 

Firstly, extraction of different feature types is studied on a sample IR image; Förstner and intersection points are 

chosen for representation of the image features. Secondly, the 3D building model is projected into each frame of 

the IR video sequence using orientation parameters; only coarse exterior orientation parameters are known. Then 

the automatic co-registration of a 3D building model projection into the image sequence with image features is 

carried out. The matching of a model and extracted features is applied iteratively and exterior orientation 

parameters are adjusted with least square adjustment. The method is tested on a dataset of dense urban area. 

Finally, an evaluation of developed method is presented with five quality parameters, i.e. efficiency of the 

method, completeness and correctness of matching and extraction.  
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Izvle�ek 
V državah Evropske unije (EU) porabijo zgradbe 40 % energije in povzro�ijo 36 % vseh emisij CO2. Podatki o 

temperaturi fasad in streh so pomembni pri dolo�itvi temperaturne u�inkovitosti zgradb, s �imer omogo�ajo 

prihranek energije. Teksturiranje obstoje�ega trirazsežnega (3D) modela stavb z infrarde�imi (IR) posnetki 

dopolni podatkovno bazo modela zgradb in omogo�i analize njihovih energetskih izgub.  

 

Namen raziskovalne naloge je samodejna dolo�itev tekstur streh in fasad stavb obstoje�ega trirazsežnega (3D) 

modela z IR posnetkov. Za to je potrebno izboljšanje natan�nosti parametrov zunanje orientacije IR kamere 

pritrjene na mobilno platformo. Razvita metoda temelji na ujemanju to�k samodejno (avtomatsko) zaznanih 

grafi�nih gradnikov z IR videoposnetka in ži�nega modela stavb.  

 

V nalogi smo najprej prou�ili zaznavo razli�nih tipov grafi�nih gradnikov na testnem IR posnetku. Förstnerjeve 

in prese�iš�ne to�ke smo izbrali kot primerne grafi�ne gradnike za predstavitev obravnavanih zna�ilnosti stavb 

na IR posnetku. 3D model stavb je projiciran na vsak posamezen posnetek videosekvence ob upoštevanju 

orientacijskih parametrov, od katerih so parametri zunanje orientacije podani le s približnimi vrednostmi. Nato 

smo izvedli samodejno koregistracijo 3D modela stavb projiciranega na videoposnetek in grafi�nih gradnikov 

zaznanih z istega IR videoposnetka. V iterativnem postopku samodejnega ujemanja 3D modela stavb in zaznanih 

grafi�nih gradnikov smo parametre zunanje orientacije izravnali z metodo najmanjših kvadratov. Razvito 

metodologijo za koregistracijo in izravnavo zunanjih orientacijskih parametrov smo preizkusili na strnjenem 

poseljenem obmo�ju. Kvaliteto metodologije smo ocenili s petimi parametri: u�inkovitostjo metodologije, ter 

popolnostjo in pravilnostjo algoritmov za ujemanje in zaznavo grafi�nih gradnikov. 
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križci, , središ�a rumenih krogov prestavljajo prese�iš�ne to�ke dolo�ene na podlagi 
zaznanih ravnih robov, ki so predstavljeni z oranžnimi daljicami. 107�

Slika P. 3: Ži�ni prikaz 3D modela stavb (LOD2); 3D model stavb je prilagojen, strehe, ki jih 
obravnavamo v raziskavi, so rde�e, ostali deli stavb modri. 108�
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Slika P. 4: Zaznane ravne robove klasificiramo in iz njih dolo�imo prese�iš�ne to�ke (rde�i 
križci). Rde�e daljice so kratki, manj zanesljivi robovi (8-12 pikslov); oranžni so 
robovi srednjih dolžin (12-32 pikslov); in zeleni so najdaljši robovi (ve� kot 
32 pikslov). 111�
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Abbreviations 

γ-rays Gamma Rays 

2D Two-dimension(al) 

3D Three-dimension(al) 

CIO International Commission on Illuminance 

CityGML City Geography Markup Language 

DGPS Differential Global Positioning System 

DTM Digital Terrain Model 

EM Electromagnetic (spectrum) 

EU European Union 

ExtOri Exterior/External Orientation (parameters) 

GIS Geographic Information System  

GML Geography Markup Language 

GPS Global Positioning System 

IEEE Institute of Electrical and Electronics Engineers 

IMU Inertial Measurement Unit 

INS Inertial Navigation System�
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LIDAR Light Detection and Ranging  
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LS Least Square (adjustment) 
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OpenGIS Open Geographic Information System 
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px Pixel(s), picture element(s) in digital image 

RANSAC Random Sample Consensus 
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SWIR Short Wavelength Infrared (spectrum) 

TC Technical Committee 

TIR Thermal Radiation  

TUM Technische Universität München (ger.) / Technical University Munich (eng.) 

UV Ultraviolet (spectrum) 

VIS Visible (domain, spectrum) 

VLWIR 

also FIR 

Very Long Wavelength Infrared (spectrum) 

Far Infrared (spectrum) 

THz Terahertz Radiation 

FM Frequency Modulation (radio) 

AM Amplitude Modulation (radio) 

DC Direct Current 
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Slovar izrazov 

Slovenska terminologija na podro�jih ra�unalniškega vida, digitalne obdelave in analize slik, 

fotogrametrije in daljinskega zaznavanja ni v celoti uveljavljena. Na podro�ju ra�unalniškega 

vida se slovenska terminologija izraziteje razlikuje glede na aplikacijo. Ta slovar�ek smo 

pripravili z namenom, da bralcu olajšamo branje in povezavo tako s slovensko kot angleško 

literaturo s tega podro�ja.  

 

Angleškim izrazom smo poiskali slovenske ustreznice in razlage priredili in povzeli po ve� 

virih, ki jih navajamo po abecednem vrstnem redu priimka prvega avtorja, ter v celoti v 

poglavju šest, Literatura. Slovar izrazov je izdelan na podlagi naslednje literature: Albert et al. 

(2003), Brown (1992), Campbell (1996), Catmull (1974), Gonzáles et al. (2002), Gonzáles et 

al. (2008), Guid (2010), Herakovi� (2007), Kajfež-Bogataj (2005), Kosmatin Fras et al. 

(2008), Kraus (1993), CityGML (2008), Oštir (2006), Poženel (1999). Sonka et al. (2008), 

Stadler et al. (2007), Šumrada (2005a), Šumrada (2005b) in Zitová et al. (2003).  

 

3D model mesta (3D city model) je digitalna predstavitev Zemljinega površja in z njimi 
povezanih objektov, ki pripadajo urbanim obmo�jem. 

3D model stavb (3D building model) je model, ki vsebuje podatke o stavbah. Omogo�a 
prikazovanje tematskih in prostorskih aspektov stavb in delov stavb v razli�nih stopnjah 
podrobnosti. 3D model stavb je sestavni del 3D modela mesta.  

Aeroposnetek ali zra�ni posnetek (aerial image) je posnetki zajet s senzorja na platformi v 
zraku oziroma atmosferi, na primer z letala ali helikopterja. Imenovan lahko tudi letalski 
posnetek.  

Atmosfersko okno (atmospheric window) je obmo�je valovnih dolžin, ki ga atmosfera 
prepuš�a in le malo absorbira. Atmosferska okna dolo�ajo dele spektra v katerih opazujejo 
senzorji daljinskega zaznavanja. 

Atribut (atribute) je detajl s katerim je izbran objektni tip opredeljen, opisan, klasificiran ali 
je izraženo njegovo stanje in razmerje do drugih objektnih tipov. Atribut opisuje lastnost 
objekta v naravi. 

City Geography Markup Language je standardni jezik za modeliranje mest, ki ga razvija 
OGC. 
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Digitalna analiza podob ali slik (digital image analysis) je podro�je, ki obravnava analizo in 
interpretacijo vsebine posnetkov, ter je povezano z digitalno obdelavo podob. 

Digitalna obdelava podob ali slik (digital image processing) je podro�je digitalnega 
procesiranje signalov in obravnava postopke digitalne obdelave podob (slik) z uporabo 
ra�unalniških algoritmov. 

Filter (filter) je pri avtomatski obdelavi podob obi�ajno kvadratna matrika. Z uporabo filtra 
na digitalni podobi se poudari ali zakrije nekatere elemente. Pri filtriranju digitalne podobe s 
filtrom se uporablja matemati�na funkcija konvolucija. 

Geografski informacijski sistem (Geographic Information System, GIS) je sistem za 
zajemanje shranjevanje, vzdrževanje, obdelavo, povezovanje, analiziranje in predstavitev 
prostorskih geokodiranih podatkov.  

Geography Markup Language (GML) je standardni jezik za ozna�evanje geografskih 
podatkov, ki ga razvija OGC. Omogo�a shranjevanje, zapis in prenos prostorskih podatkov. 

Georeferenciranje (georeferencing) je postopek dolo�itve prostorskih koordinat objektom in 
pojavom v prostoru. Na podro�ju fotogrametrije in daljinskega zaznavanje je to vpenjanja 
satelitskih ali aeroposnetkov v obstoje� koordinatni sistem. 

Global Positioning System (GPS) je sistem za globalno dolo�anje položaja, ki temelji na 
tehnologiji vesoljske radijske navigacije. Vzpostavilo ga je ministrstvo Združenih držav 
Amerike. GPS je satelitski navigacijski sistem kot tudi GLONASS, Galileo in Beidu. 

Grafi�ni gradnik (feature) predstavlja geografski pojav v vektorskem 2D modelu. Osnovni 
grafi�ni gradniki so to�ke, linije (segmenti ali vektorji) in obmo�ja (poligoni), njihova 
vozliš�a in oznake. Grafi�nim gradnikom so lahko pripeti atributni podatki.  

Grobo pogrešeno opazovanje (outlier) je tisto opazovanje, ki vsebuje grobi pogrešek in ga je 
potrebno izlo�iti iz obravnave.  

Homologna to�ka je ista to�ka v naravi, ki se pojavlja na ve� razli�nih posnetkih.  

Inercialna merilna enota ali naprava (inertial measurement unit) omogo�a meritev kotnih 
premikov. Sestavljena je iz pospeškomerov in/ ali žiroskopov. V povezavi z GPS meritvami 
se uporablja za dolo�anje parametrov zunanje orientacije. 

Inercialni navigacijski sistem (inertial navigation system) omogo�a dolo�itev položaja 
zra�nega plovila, torej parametrov zunanje orientacije.  
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Infrarde� spekter (infrared spectrum) je del spektra elektromagnetnega valovanja valovnih 
dolžin med 0,74 in 1000 µm. Segreta telesa velik del energije sevajo v IR spektru, ki je 
�loveškemu o�esu neviden.  

Izravnava (adjustment) je matemati�ni postopek dolo�itve neznank v predolo�enem sistemu 
s statisti�no oceno njihovih natan�nosti.  

Kot gledanja (look angle) je smer gledanja senzorja. Na primer: kot gledanja kamere je lahko 
navpi�no navzdol, usmerjen v nadir, poševno (oblique), naprej v smeri leta (forward looking). 

Lo�ljivost (resolution) je sposobnost sistema za lo�evanje pojavov ali lastnosti. V 
fotogrametriji in daljinskem zaznavanju poznamo prostorsko, radiometri�no, spektralno in 
�asovno lo�ljivost. 

Mestni toplotni otok (urban heat island) je pojav temperaturne razlike med mestom in 
okoliško naravno pokrajino. Pri nas, v Evropi, je ta pojav izrazitejši v poletnih mesecih.  

Model (model) je poenostavljena podoba stvarnosti. Je abstrakcija in posplošitev tistega dela 
stvarnosti, ki je pomemben za dolo�en namen in zajema njegove bistvene zna�ilnosti. 

Modeliranje (modelling) je postopek na�rtovanja in ustvarjanja modela. 

Nadir (nadir) je to�ka na zemeljskem površju neposredno pod letalom ali satelitom.  

Nagib (roll) je naklon letala v smeri krila. 

Naklon (pitch) je premik letala v smeri kljuna in repa. 

Opti�ni spekter (optical spectrum) je opredeljen z valovnimi dolžinami, ki jih je mogo�e 
odbiti in lomiti s pomo�jo le� in ogledal (zajema obmo�je valovnih dolžin med 0,3 in 15 �m). 
Vsebuje viden spektra in del IR spektra.  

Parametri ali elementi zunanje orientacije (exterior orientation parameters) so koordinate 
položaja kamere oziroma projekcijskega centra v prostoru in trije rotacijski koti, na primer: 
nagib, naklon in zasuk. 

Parametri ali elementi notranje orientacije (interior orientation parameters) so: koordinati 
glavne to�ke v slikovnem koordinatnem sistemu in konstanta kamere. 

Piksel (pixel) ali slikovni element je najmanjši del podobe. Podaja informacijo o karakteristiki 
to�ke, na primer: radiometri�no ali sivinsko vrednost, barvo, intenziteto.  

Platforma (platform) je nosilec na katerem so instrumenti za daljinsko zaznavanje. Lahko so 
na tleh (terestri�ne), v zraku (aero) ali satelitih in drugih vesoljskih plovilih. 
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Podpikselska natan�nost (subpixel accuracy) je dolo�itev položaja pojava na podobi, ki 
obsega ve� pikslov, z natan�nostjo višjo od radiometri�ne lo�ljivosti podobe. 

Poravnava ali registracija (registration) je postopek geometrijskega prileganja dveh ali ve� 
podob pri katerem se dolo�a najboljša transformacijska funkcija (in parametri transformacije) 
med posnetkoma. 

Posnetek videosekvence (frame) je posamezen posnetek videoposnetka.  

Poševen posnetek ali fotografija (oblique photography or image) je posnetek zajet s kamere 
s poševnim kotom gledanja proti površju.  

Potratnost izra�una (computational cost) je �as, ki je potreben za izra�un pri uporabi 
operatorja ali metode. V aplikacijah ra�unalniškega vida, digitalne obdelave in analize podob 
je potratnost operatorjev in algoritmov za izra�un pogosto omejitveni dejavnik. 

Prostorska lo�ljivost (spatial resolution) je velikost najmanjšega predmeta na podobi, ki ga 
zaznamo. Pri digitalnih aeroposnetkih je prostorska lo�ljivost velikost piksla v prostoru 
(ground sample resolution). 

Ra�unalniški vid (computer vision) je podro�je znanosti in tehnologije, ki se ukvarja z 
interpretacijo 2D podob v povezavi in z namenom razumevanja 3D okolja. 

Radiometri�na lo�ljivost (radiometric resolution) je sposobnost senzorja za lo�evanje 
vrednosti na podobi, na primer 8-bitna lo�ljivost pomeni 256 razli�nih sivih vrednosti.  

Slikovno ujemanje (image matching) je postopek iskanja homolognih vzorcev ali to�k na 
dveh ali ve� posnetkih, ter iskanje dolo�enega vzorca na sliki.  

Stopnja podrobnosti ali detajla (Level of Detail) se navezuje na vsebino, položajno 
natan�nost, stopnjo generalizacije in podrobnosti 3D modela mesta. Termin je definiran v 
standardu CityGML, ki ga razvija OCG. 

Šum posnetka (image noise) se pojavi zaradi slu�ajnih pogreškov pri zajemu posnetka.  

Tekstura (texture) predstavlja lastnosti površine zgradbe ali objekta. Tekstura je slika ali 
podoba, ki jo lahko projiciramo v ve�razsežen prostor oziroma na površino modela. 

Teksturiranje (texturing, texture mapping) je postopek, v katerem je 2D tekstura kartirana na 
površino v 3D prostoru. 

Termi�ni spekter (thermal spectrum) je del spektra elektromagnetnega valovanja valovnih 
dolžin med 0,1 in 1000 �m, kjer �rno telo s temperaturo nad 0 K seva energijo v okolico. Pri 
daljinskem zaznavanju se termin uporablja ožje, in sicer za valovne dolžine okoli 3(8)-15 �m. 
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Topologija je veda o medsebojnih odnosih med objekti. 

Ujemanje grafi�nih gradnikov (feature matching) je iskanje povezav med grafi�nimi 
gradniki na ve� posnetkih, ki predstavljajo isti pojav v prostoru. Je del postopka registracije 
(prileganja) podob.  

Vidni spekter (visible spectrum) je del spektra elektromagnetnega valovanja valovnih dolžin 
med 380 in 740 nm. To je zvezen spekter barv od vijoli�ne do rde�e, ki jih zaznava �loveško 
oko.  

Zasuk (yaw) je premik letala v smeri navpi�ne osi. 

Zaznava ali ekstrakcija grafi�nih gradnikov(feature extraction) je postopek, pri katerem z 
metodami digitalne obdelave podob dolo�imo grafi�ne gradnike na podobi. 

Ži�ni model (wire-frame model) je na�in predstavitve in modeliranja 3D modela, sestavljen 
iz poligonov ali daljic.�
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1 INTRODUCTION 

In the introduction the motivation for this work with the hypothesis (section 1.1) and a state of 

art in the field of research (section 1.2) is given. Problem overview and objectives of the 

thesis are presented in the section 1.3 and finally in the section 1.4 organisation of the 

diploma thesis is listed. 

1.1 Motivation 

In the last decades the world energy consumption has been increasing, with the exception of 

the year 2009. »World primary energy consumption - including oil, natural gas, coal, nuclear 

and hydro power - fell by 1.1% in 2009, the first decline since 1982« (Statistical Review of 

World Energy 2009, 2010). The energy consumption decrease is assumed to be connected 

with economic contraction in the year 2009. In European Union (EU) countries buildings 

consume 40% of the energy and cause 36% of CO2 emissions (Directive 2010/31/EU, 2010). 

For improving the energy performance of buildings, it is necessary to decrease the energy 

consumption and greenhouse gas emissions. Importance of the energy consumption in 

buildings and its influence on the environment are commonly addressed topics in science, 

research as well as politics. These topics are motivation for numerous regulations, e.g.: recast 

of EU’s The Directive on energy performance of buildings (Directive 2010/31/EU, 2010) 

adopted in May 2010 and standards. Technical committee (TC) 163: Thermal performance 

and energy use in the built environment of International Organization for Standardization 

(ISO) has published 83 standards in the field of building and civil engineering works, 

additional 27 standards are under development. These standards include energy performance 

of buildings, test and measurement methods, calculations and also thermal insulation products 

(ISO/TC 163, 2010). 
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Inspection of buildings can contribute to develop strategies for energy savings. The building 

data should be collected and regularly updated for building analysis. Numerous buildings lead 

to a large amount of data which must be acquired, processed and analysed. Therefore sensors 

mounted on mobile platforms, i.e. spaceborne, airborne or mobile terrestrial platforms, are 

appropriate to assure time and cost efficient data acquisition.  

 

High population density is distinctive of urban areas and is often connected to high building 

density. Focusing on urban areas, many (virtual) city models exist. »Virtual 3D city models 

are digital representations of the Earth’s surface and related objects belonging to urban areas« 

(Stadler, 2007). Three-dimensional (3D) building models contain buildings and building data 

and are a part of 3D city models. They are helpful for interpretation of the image contents 

(Stilla, 2000). The 3D building models can contain textures from images taken by sensors 

mounted on variety of platforms. Spaceborne and/or airborne images with top-down view 

provide data for roofs whereas terrestrial images provide data for facades. Additionally, 

oblique airborne images can provide data for roofs and facades (Frueh, 2004 and Stilla, 2009). 

Combination and coverage of data types is desired for enhancing existing 3D model. 

 

The developed Geography Markup Language (GML) standard City Geography Markup 

Language (CityGML) allows integrating different Level of Detail (LOD) into one Geographic 

Information System (GIS) database (Hoegner, 2009). Existing city models have different 

LOD and are often represented with textures in visual (VIS) spectrum. Some structures appear 

in VIS and infrared (IR) spectrum, whereas some, e.g. heating systems, thermal leakages, can 

only be captured by IR data. For instance, urban heat islands can be observed in the IR 

spectrum in small scale, whereas inspection of buildings requires larger scale (Weng, 2009). 

Airborne IR images have higher resolution in comparison to space-borne images; therefore 

they have higher accuracy for locating thermal losses on buildings in larger scale. The thermal 

information of facades and roofs are important for building inspection and energy saving. 

Texturing existing 3D building models with IR images enriches the model database and 

enables the analysis of energy loss of buildings. »Thermal images of different parts of 

buildings acquired in various scales are analysed, however conducted analysis concern mainly 

the radiometric characteristics, avoiding dealing with the geometry of the images« 
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(Stilla, 2009). Locating e.g. thermal leakages on roofs or facades in larger scale also requires 

controlling the accuracy of texturing. 

1.2 Related work 

Preconditions for accurate texturing of building models are calibrated camera with known 

Interior orientation (IntOri) parameters, a geo-referenced building model and known position 

of the acquisition device, i.e. Exterior orientation (ExtOri) parameters (Stilla, 2009). are 

Besides cameras, there are usually also devices for tracking the trajectory of flight on airborne 

platforms, most commonly Global Positioning System (GPS) receivers and inertial 

measurement unit (IMU) to obtain coarse ExtOri parameters. Next to abovementioned 

preconditions, relative positions between all measuring devices must be known or calibrated. 

Projecting the 3D building model into the image using all these parameters should be made to 

extract sub matrix of the image corresponding to a specific building face. ExtOri parameters 

gained from GPS/IMU often do not have sufficient accuracy for high quality texture mapping. 

To refine the accuracy of position of the acquisition device, many researchers use image 

processing methods, specifically methods for automatic matching of a 3D model with images 

were developed. Defining the position of acquisition or measuring device is often addressed 

in literature as pose estimation (problem). In case of two non-calibrated images this problem 

is also referred to as simultaneous pose and correspondence problem. 

 

Hsu et al. (2000) are using projection of the 3D model line segments into image and extracted 

line features to refine the pose of acquisition device. Firstly, an algorithm to extract and track 

features in video sequence is applied and tracked features are used to predict poses between 

frames. Secondly, line segments are projected with predicted pose in an image and pose is 

refined by aligning projected lines to oriented image gradient energy pyramids. The algorithm 

is tested on aerial and terrestrial video sequence of a large scale urban scene. Frueh et al. 

(2004) also use extracted lines for pose estimation. Canny edge detector is applied to detect 

image edges in high resolution oblique images in VIS spectrum, which are further divided 

into line segments by a recursive endpoint subdivision algorithm. To find a camera pose, a 

building model is projected into the image around an initial pose obtained from integration of 
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GPS and inertial navigation system (INS) and building lines are matched to extracted lines. 

Each pose is rated using weighted correlation function based on line-to-line matching 

algorithm. The pose with the highest correlation value is used for extracting the texture. A 

weakness of this method is very high computational cost. Problems with edge extraction and 

matching are also addressed in the article. Naming a few edges belonging to the same entity in 

object space are often extracted incompletely and inaccurately in a single image, non-single 

edge response, endpoints of extracted edges are not reliable (Tian, 2008, Frueh, 2004, 

Lee, 2002). Tian et al. (2008) propose edge matching across a video image sequence using 

geometric constrains based on reliable points. Reliable points are calculated by analyzing the 

endpoints of extracted edges and are qualitative evaluated. Using reliable points significantly 

reduces the search space for matching step and therefore also the computational cost of the 

method.  

 

A possible approach for camera pose estimation is using vanishing point(s). In Lee et al. 

(2002) two or three vanishing points and 3D to 2D (two-dimensional) line matching to 

estimate ExtOri parameters of terrestrial camera are used. Ding et al. (2008) propose a two 

step process for refinement of camera position. Firstly, coarse ExtOri parameters are 

estimated using vanishing points and data obtained from GPS/INS measuring system. Second 

step refines the coarse ExtOri parameters estimated in first step by matching of orthogonal 

corners from oblique images and lidar model (LIDAR, Light detection and ranging). 

 

Hoegner and Stilla (2008) used IR image sequences acquired by mobile terrestrial system for 

automated texturing of 3D building models. They discuss the special characteristics of IR 

spectrum compared to VIS spectrum which can cause problems in automatic texturing and 

also feature detection. Stilla et al., 2009 and Kolecki el al., 2010 describe direct geo-

referencing with GPS/INS data and extended system calibration. They address problems 

given by vibrating platforms, such as helicopters, which are observable and may cause 

misalignment of projected model in an image in subsequent frames. In this diploma thesis an 

approach for refinement of the coarse ExtOri is presented using point-to-point matching. A 

correspondence between 3D wire-frame building model and image features extracted from 

video sequence are automatically searched. 
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1.3 Problem overview and objective of the thesis 

If the accuracy of the GPS/INS data is not high enough to gain the needed accuracy of 

orientation parameters of the mobile platform, one possible approach is to model and estimate 

the influences on the GPS/INS measurements and correct them. A reverse approach is that 

image data, acquired with the camera mounted on the mobile platform, are used for the 

refinement of orientation parameters. This thesis applies the reverse approach, using image 

processing methods to detect features in the IR images acquired with the mobile platform. A 

goal is to propose an automatic algorithm for refinement of ExtOri parameters for every 

image in the video sequence. 

 

Firstly, a special attention is devoted to choosing the appropriate features to be automatically 

extracted from the IR image sequence. The resolution of the IR images is lower in comparison 

to the capability of cameras acquiring in VIS spectrum. What is more, the properties of the IR 

spectrum differs from VIS, therefore the choice for feature type is studied on a few cases. 

Secondly, the 3D building model is projected into the images, using corrected orientation 

parameters calculated in the extended system calibration proposed by Kolecki et al. (2010). 

The 3D building model is projected into the 2D image under consideration of all the observed 

orientation parameters For example, distortions of the image are present due to the lens 

distortions of the camera, and when the 3D building model is projected into the image, it is 

distorted for values of the lens distortions. For projection of the 3D building model into each 

of the images of a sequence, different ExtOri parameters must be used. This thesis focuses 

next on developing a method for automatic co-registration of a 3D building model projected 

into the image sequence with image features. (Figure 1).  
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Figure 1: Flowchart of the method for co-registration of model and extracted features with 
input and output parameters. 

�

Hypotheses: 

- Features extracted from the IR image registered with the 3D building model can 

improve the ExtOri parameters so that the projected building model is better aligned 

to the observed buildings in image. 

- GPS/INS data and system calibration provide coarse ExtOri parameters, accurate 

enough for the first projection of the 3D building model into the image. 
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1.4 Organisation of the diploma thesis 

This diploma thesis is divided into eight main chapters. In this chapter the introduction and 

the motivation for this diploma thesis are given, then an overview of related work is presented 

and finally the approach to solve the given problem is described. Chapter 2 includes 

theoretical background of the topics linked to the given problem, datasets and developed 

method. A method developed for the solution of described problem is presented in chapter 3, 

firstly the different feature types extracted from IR images are discussed and according to the 

extracted features, a method is developed and described. A method is tested on the sample 

dataset, described in detail in chapter 4. Additionally, a comparison between the chosen 

feature types is presented, evaluation of the method, and the problems of the 3D building 

model are addressed. All the results are discussed. Finally, in chapter 5 the conclusions are 

presented and ideas for future work are proposed. Chapter 6 contains an extended abstract of 

this thesis in Slovene language. Chapters 7 and 8 are the lists of references and appendixes, 

respectively.  
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2 THEORETICAL BACKGROUNDS 

In this work a method of registering a building model in Level of Detail 2 and extracted 

features detected in the infrared image sequences taken by a helicopter is presented. The 

Organisation of the chapter follows the structure of the developed methodology, used data and 

procedures. Firstly, three disciplines studying images are described, then the electromagnetic 

spectrum is presented, emphasising the infrared spectrum and the IR acquisition devices. Next 

we focus on used methodology, summarizing image registration steps, specifically the feature 

extraction and matching. Later a description of building models, which can be projected into 

the image using space central projection, also under consideration of the IntOri and ExtOri 

parameters, is given. A short description of the least square adjustment with observation 

equations is given. Finally, an overview on texture mapping of building models is presented. 

2.1 Computer Vision, Digital Image Processing and 

Analysis 

The Input data used in this work are images taken from the IR video sequence. Three related 

disciplines studying images are described in this section; computer vision, digital image 

processing and image analysis. Computer vision interprets images representing a 3D 

environment whereas digital image processing and analysis are dealing with 2D images. This 

section gives a short overview of abovementioned disciplines, which are connected to the 

photogrammetry and remote sensing, thus are not a part of them.  

2.1.1 Computer vision 

Human vision and understanding of its functioning from the psychological and physical point 

of view are analogue to research of computer vision. »Vision allows humans to perceive and 

understand the world surrounding them while computer vision aims to duplicate the effect of 
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human vision by electronically perceiving and understanding an image« (Sonka, 2008). 

Programming software to imitate human understanding of 3D world is a difficult task. A pair 

of eyes allows humans to see in 3D; in addition, humans have natural ability to recognize 

three-dimensional objects from 2D images. Computer vision tasks and applications mean 

giving computers ability to reconstruct and understand 3D scene from usually 2D sources, i.e. 

images, video streams, which requires detailed understanding of human congenital ability for 

pictorial recognition (González, 2008). Hochberg and Brooks (1962) described an experiment 

supporting hypothesis that pictorial recognition is an unlearned ability and therefore is not 

culturally conditioned. In the experiment a child was raised without being shown any pictures 

and avoided to be taught with help of 2D drawings of any kind. After 19 months, the child 

was shown black and white line drawings and photographs and was instantly able to identify 

objects on them (Hochberg, 1962). 

 

There are two main reasons why research in computer vision is important. Firstly, to equip 

machines with knowledge and understanding of surroundings that humans have. This has a 

crucial meaning for automation of processes in many applications. Computer vision is closely 

connected with acquisition devices, i.e. cameras, video devices; data can be acquired in 

visible spectrum of electromagnetic radiation or any other and can be enhanced with data 

from different types of sensors. Fusion of different data types contains more informational 

value, therefore efficient algorithms – such as machine vision methodology provides - to 

process and evaluate large amount of input data are needed. Secondly, research is important to 

understand computational understanding of human vision. There are several attempts to 

connect computational results to the relevant areas of psychology. (González, 2008, 

Sonka, 2008).  

2.1.2 Digital image processing and analysis  

Digital image processing is a subfield of digital signal processing. It refers to the processing 

of digital images using computer algorithms. Digital images are 2D functions f(x, y), where 

x, y are coordinates and the amplitude f at position (x, y) is called grey level or intensity 

(González, 2002). Digital image processing is rather independent of an application and does 

not include interpretation of the processed image. In contrast to digital image processing, the 
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crucial step of image analysis is image interpretation which often depends on the application. 

Inputs and outputs of digital image processing are images, extracted attributes from images 

and individual objects. It must be pointed out that there is no general agreement among 

authors regarding where digital image processing stops and other areas, such as computer 

vision and image analysis start. (González, 2008). 

 

In this work, a 3D model is projected into the IR image on which features are detected. 

Feature detection is a result of a method of digital image processing. Interpretation of 

extracted features, for example analyzing which extracted point is the edge point of a 

building, is a task of image analysis. The understanding and interpretation of the 3D 

environment is a domain of computer vision. Thus connection of a 3D building model and 

extracted and interpreted features is an area of computer vision.  

2.2 Infrared spectrum and infrared remote sensing 

In this section, a representation of electromagnetic (EM) spectrum emphasising the infrared 

spectrum and IR acquisition devices is given. In this thesis IR image sequences are used and 

processed, therefore knowledge about used spectral band and its characteristics is important 

for understanding and interpretation of results, as well as for developing the methodology.  

2.2.1 Electromagnetic spectrum 

EM spectrum is illustrated in image in Figure 2 and divided into spectral bands, see Table 1. 

Human eyes are capable of detecting the visible spectrum (VIS) that corresponds to 

wavelengths in range of around 380–740 nm and corresponding continuous spectrum of 

colours from violet to red. The EM spectrum covers a broad range: from radio waves with 

long wavelengths (low energy) to gamma rays (γ-rays) with short wavelengths (high energy). 

Different divisions of the EM spectrum can be found in literature, thus the boundaries are set 

according to discipline. Additionally, neighbouring types of electromagnetic energy also 

overlap in some cases. (Campbell, 1996). 
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The EM spectrum can be expressed in terms of energy E, wavelength λ or frequencyν:  � � � ���� ���	�
��
and � � �  � ��� ����	����
where: 

λ wavelength [m], 

 ν frequency [Hz], 

c speed of light [m/s], 

E energy [J] and 

h= 6.62606896⋅10−34 m2 kg/s, Planck's constant. 
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Figure 2: The electromagnetic spectrum emphasising infrared spectrum. (Source: Ibarra-
Castanedo, 2005, p.128). 
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2.2.2 Infrared spectrum 

The IR spectrum has wavelengths longer than red portion of the VIS domain and it extends to 

the microwaves with wavelengths of about 1 mm. The IR spectrum (0.74-1000 �m) can be 

divided into five spectral bands (CIO, 2010, Ibarra-Castanedo, 2005). »Although this 

subdivision is somehow arbitrary and varies from one source to another, it is based on the 

atmosphere high transmissivity windows, i.e. the wavelength bands where atmosphere 

interferes the less with the incoming IR radiation, and on the detector’s spectral sensitivities« 

(Ibarra-Castanedo, 2005). The division of the EM spectrum outside the IR spectrum is 

adapted from Campbell (1996). 

 

Table 1: Spectral bands with detail division of the infrared spectrum (adapted from Campbell, 
1996 and Ibarra-Castanedo, 2005). The image sequence used for validating the developed 
methodology in this thesis was acquired with IR camera in MWIR spectral band 3-5 �m 
(highlighted in the table). 

 Spectral band /Type of EM radiation Wavelength 
 Gamma Rays (γ-rays) < 0.03 nm 

X-Rays 0.03-300 nm 
Ultraviolet (UV) 0.30-0.38 �m 
Visible (VIS) 0.38-0.74 �m 

In
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(I

R
)  

0.
74

 - 
10
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�
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Near Infrared (NIR) 0.74-1 �m 
Short Wavelength Infrared (SWIR) 1-3 �m 
Medium Wavelength Infrared (MWIR) 3-5 (8) �m 
Low atmospheric transmittance window  
Long Wavelength Infrared (LWIR) 8-14 �m 
Very long Wavelength Infrared (VLWIR, 
also FIR) 

14-1000 �m 

 Micro waves 1 mm-30 cm (1 m) 
Radio waves > 30 cm (1 m) 

 

Two important categories of the EM spectrum are not shown in Table 1, these are optical 

spectrum and thermal spectrum.  

 

The optical spectrum (0.3–15 �m) is defined by wavelengths that can be reflected and 

refracted with lenses and mirrors. It includes the VIS and part of the IR spectrum 

(Campbell, 1996). Optical properties of the VIS spectrum are similar to optical properties of a 
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part of the IR spectrum; therefore similar cameras can be used for detecting the radiation in 

the optical domain.  

 

An object with a temperature above 0 K is in an ideal case a black body, radiating energy, i.e. 

heat, to the environment. The thermal radiation (TIR) band or thermal spectrum (0.1-

1000 �m) includes complete VIS spectrum, and parts of IR and UV (highlighted in Figure 2). 

Especially in remote sensing the term thermal IR radiation is referring to the wavelengths of 

MWIR and up to (14) 18 �m. (Campbell, 1996, Ibarra-Castanedo, 2005). 

 

As mentioned in the previous paragraph, all objects with an absolute temperature above 0 K 

radiate IR energy. A background radiation from the Earth’s surface is at about 300 K and 

causes thermal noise when observing IR radiation with wavelengths 3 �m or longer. To 

reduce background thermal noise, cold filters, cold shields or cooling systems of detectors are 

necessary. (Characteristics and use of infrared detectors, 2004.) 

 

The IR radiation is invisible for the human eye, therefore it needs to be detected and 

transformed into a visible image with the aid of specialised equipment. Infrared imaging is 

used in military and civilian applications, naming a few: target acquisition, night vision, 

tracking, thermal efficiency analysis, temperature detection, vehicles detection and tracking, 

glacier monitoring, spectroscopy, astronomy, industrial and machine control. (Campbell, 

1996, Ibarra-Castanedo, 2005, Laval University MiViM, 2010). 

 

Important criteria for band selection: 

- emissivity of the object of interest, 

- temperature, 

- indoor or outdoor application and 

- operating distance (close range, aerial image acquisition, etc.). 

 

Detection of high temperature objects, having peak emission at short wavelengths a MWIR 

band is appropriate, if focusing on emissivity of the object of interest as main criteria. On the 

contrary, for detection of room temperature object, LWIR band is more appropriated. 
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Additionally, the LWIR is more appropriate for outdoor applications, because they are less 

affected by the sun radiation. (Ibarra-Castanedo, 2005, Laval University MiViM, 2010). 

2.2.3 Infrared cameras 

The human visual system cannot evaluate detected light in absolute terms in contrast to the 

acquisition devices, e.g. cameras. Data acquired with cameras can be qualitatively evaluated 

and are not limited only to the visible EM spectrum as humans are. Sensors are capable of 

detecting energy radiated by a selected band of the EM spectrum and visualised so that 

humans can detect the object of interest. A significant limitation of sensors is that wavelength, 

in which we are observing must be the same or possibly smaller than the size of the observed 

object. There are also other technical limitations in materials, construction and physical 

properties of sensors. (González, 2008, Sonka, 2008). 

 

An IR sensor is a measuring device that converts radiated IR energy into electrical current or 

any other measurable form. IR sensors can be divided into two classes, thermal and photonic 

or quantum detectors. A thermal detector responds to incident radiation by raising its 

temperature when it rises above the equilibrium state of the sensor. The excess of the 

temperature is removed by conduction. The thermal detector is at equilibrium when there is 

no conduction of energy; i.e. the sensor radiates and absorbs energy at the same rate. These 

types of detectors are (theoretically) independent of observed wavelengths and their peak of 

sensitivity is at room temperature. Main principle of photonic or quantum detectors is that the 

incident radiation excites electrons from the valence to the conduction atomic bands. They are 

made from semiconductor materials and often require cooling to reduce noise-to-signal ratio. 

The thermal detectors have lower sensibility and response speed than photonic sensors, which 

need cooling to obtain relative high sensitivity. However, thermal detectors are less 

expensive. Both types of IR sensors are being developed with the aim to increase sensitivity, 

response time and lower the price. (Ibarra-Castanedo, 2005, Laval University MiViM, 2010). 
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2.3 Image registration 

The main steps of image registration are presented and shortly described in this section, 

stressing out feature extraction and feature-based methods for matching. A focus of the thesis 

is re-calculation of orientation parameters of acquisition device using feature extraction and 

feature matching.  

 

Image registration is a process of geometrically alignment of two or more images (reference 

and sensed images) by estimating optimal transformation between them. For points in 

reference image, the corresponding points in sensed image are defined and related with the 

transformation function. Image registration is widely used in applications of remote sensing, 

photogrammetry, medical imaging, computer vision, etc. The registration methods can be 

divided into four main groups with regard to image acquisition: from different viewpoints, at 

different time, with different sensors or scene to model registration. (Zitová, 2003, Brown, 

1992). Scene to model registration is in literature also addressed as prototype or template 

registration in which the alignment between image and a template is searched (Brown, 1992). 

In this work scene to model registration is used where model (template) is a projected 3D 

building model into the scene, i.e. each frame of video sequence.  

 

Zitová and Flusser (2003) present a review of recent and classic registration methods. They 

suggest division of registration methods in four steps:  

- feature detection or feature extraction, 

- feature matching, 

- transform model estimation is defining and estimating parameters of mapping function 

and 

- image re-sampling and transformation is transforming the sensed image with regards 

to mapping function. In this step interpolation methods are often used.  

 

All the steps are not required for every application and/or can be jointed together. A different 

division of registration methods and steps are presented in Brown (1992) ensuing from the 

different type of variations in images and registration techniques. Main stress is given to the 
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choice of the transformation class, search for optimal transformation parameters and the 

evaluation of chosen parameters.  

2.3.1 Feature extraction  

Features are denoting pieces of information in an image relevant for solving certain problem. 

Therefore definition of a feature often depends on the application and given task. According 

to Brown (1992), the first step in image registration is the decision on the feature space which 

extracts the information in the images that will be used for matching. In this work, chosen 

feature spaces are addressed as features, more precisely points, contours, line segments and 

area borders that represent building edges and corners. Feature extraction is an image 

processing method of which results are extracted features in an image; automatic feature 

extraction implies on using computers to detect them (Zitová, 2003, Sonka, 2008). Two major 

categories of feature extraction, area-based and feature-based methods are described below, 

adapted from Zitová and Flusser (2003). 

 

Area-based methods are emphasising the matching step which is merged together with the 

extraction. Using area-based methods, no salient image objects are detected in contrast to 

feature-based methods. For area-based methods, a window of predefined size (»template«) is 

used to search for correspondence in an image. This window in not a feature, nevertheless, 

there is a high probability for wrong matching, if the extracted window does include smooth 

area without any prominent details.  

 

Feature-based methods; this approach is based on extracting features in an image. Commonly 

used features in computer vision tasks are region, line and point features. More complex 

extracted features can also be used, e.g. statistical features, higher-lever features (Brown, 

1992).  
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2.3.2 Feature matching 

Feature matching is a registration step in which correspondence between detected features in 

sensed and reference image is established or correspondence between a »template« cut out of 

a reference image and sensed image is searched for feature-based or area-based methods, 

respectively. The section 2.3.2 is adapted from Zitová and Flusser (2003). 

 

In literature, area-based methods are also named correlation like methods or template 

matching. Brown (1992) mentions these techniques also to refine or to estimate the 

parameters of chosen transformation. 

 

Feature-based methods. Two sets of features are extracted in reference and sensed images and 

a pair wise correspondence between them is searched. In regard to extracted feature type, 

point-to-point algorithm or line-to-line matching algorithm can be applied. More complex 

extracted features require more extensive matching algorithm. 

 

Correspondence between features can be searched using: 

Spatial relations. In certain distance from a feature in the reference image a correspondence to 

a feature in the sensed image is searched. 

Invariant descriptors. Correspondence is searched using the description of features which 

should be invariant to expected image deformation. 

Relaxation methods. Each feature from the sensed image is labelled with an identificator of a 

feature from the reference image. The method is iterative and is recalculating pairs until a 

stabile solution is found.  

Pyramids and wavelets. Aim of these methods is mainly to reduce computational cost of 

matching algorithm. 

 

Next two steps of the image registration, transform model estimation and image re-sampling 

and transformation are not described in detail. The definition and estimation of the mapping 

parameters for used mapping function in this thesis is adapted from Kolecki et al. (2010). 

Image re-sampling is in this case model re-sampling with regards to the mapping function, 

without applying any interpolation methods.  
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2.4 Building models and Level of Detail 

Building models can be projected into the 2D images for better interpretation of image’s 

content (Stilla, 2000). The LOD of a building model is defining the amount of details 

included in a model as well as the accuracy. This section is adapted from the Open 

Geographic Information System (OpenGIS) CityGML, Encoding Standard, Open Geospatial 

Consortium (OGC) (CityGML, 2008). 

 

»The building model allows for the representation of thematic and spatial aspects of 

buildings, building parts and installations in four levels of detail, LOD1 to LOD4«. 

(CityGML, 2008, p. 56). CityGML supports different LOD, that is, a same object can be 

represented in different LOD simultaneously. Additionally, generalisation of the relations 

between objects in different LODs is supported. This allows analysis and visualisation of the 

same object with regard to different degrees of resolution.  

 

 

Figure 3: The five levels of detail defined by CityGML (source: CityGML, 2008 p. 9). 
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Table 2: Level of detail in city models with description of details according to CityGML 
standard (Adapted from CityGML, OGC 2008, p.9-10 and p. 56). 

Level of Detail Description of details of a building model 
LOD0 Two and a half dimensional (2.5) Digital Terrain Model (DTM), over 

which an aerial image or a map may be draped. 
LOD1 Block model with prismatic buildings and flat roofs. 
LOD2 Differentiated roof structures 

Additionally, vegetation objects may be presented and high-resolution 
textures can be mapped onto represented structures.  

LOD3 Detailed vegetation and transportation objects 
LOD4 Interior structures for 3D objects For example, buildings are composed of 

rooms, interior doors, stairs, and furniture 
 

Building models in certain LOD are differing by the contents (Table 2) as well as by 

accuracies and minimal dimensions of the objects that are included. Accuracy is a standard 

deviation of the absolute 3D position of a point; relative position is not yet defined in 

CityGML (2008) standard, but it should be higher in comparison to the absolute position. For 

a model in LOD2, the positional and height accuracy must be 2 m or better, and all objects 

with a footprint of at least 4 m × 4 m have to be considered (Albert, 2003). In the Appendix A 

is a table with LOD 0-4 of CityGML with its accuracy requirements.  

2.5 Central projection in space 

A central projection as a geometrical model is commonly used in photogrammetry and remote 

sensing to reconstruct position and shape of objects from photographs (images) or to obtain 

position of the acquisition device, i.e. calculation of ExtOri parameters on the ground of 

measured image points. For determination of the position of the acquisition device, the IntOri 

parameters should be known, and the ExtOri parameters calculated. In this thesis, a position 

of an IR camera is re-calculated for each frame of the video sequence.  

 

The relation between the 2D image coordinates (x, y) of the image point of the object P and 

the (X, Y, Z) coordinates of the object P is given with co-linearity equations 3 and 4 (Kraus, 

1993). 
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x0, y0 image coordinates of principal point, 

x, y 2D image coordinates of the object P, 

ck camera constant or principal distance, 

X0, Y0, Z0 object coordinates of the camera position, 

X, Y, Z coordinates in 3D object coordinates system of the object P; frequently in the 

national system of ground coordinates and 

R spatial rotation matrix of size 3 × 3 with elements rij, i, j = 1, 2, 3. 

 

Spatial rotation matrix R is given with � � � ���� � ������ � �������� ���	� ��
where: 
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Yaw, pitch, roll are special kind of Euler rotation angles named also Tait-Bryan angles (Figure 

4 and Figure 5). Order of multiplications of rotation matrixes (Eq. 5) can be changed in some 

cases, as well as signs in front of sinus or cosines function. The change of sign in Eq. 6, 7 and 

8 changes the orientation of the axes of rotations. 

 

Interior orientation parameters (IntOri) are x0, y0 and ck as well as additional parameters. 

Additional parameters are a consequence of inaccuracies in construction or materials of 
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camera, i.e. radial and tangential distortion parameters. The camera constant, the position of a 

principal point and the distortions are periodically re-evaluated in a calibration process. If the 

higher accuracy is to be achieved, more IntOri parameters must be set in calibration.  

 

Exterior orientation parameters (ExtOri) are X0, Y0, Z0 and roll, pitch, yaw angles. X0, Y0, Z0 

are coordinates in the global coordinate system, which determinate the position of an aircraft 

in a certain moment and are usually acquired with GPS measurements. To control the 

orientation of the flying aircraft (helicopter or any other aerial vehicle), yaw, pitch and roll 

motion (Figure 4) should be observed. Yaw, pitch and roll motion are rotations about yaw, 

pitch, roll axes, respectively (Figure 5). 

 

 

Figure 4: Yaw, pitch, roll motions of a helicopter (Source: ACME, 2010). 

 

Rotation angles define a rotation between a reference axis system and a vehicle-fixed axis 

system which is defined with: 

Origin is centre of gravity of aircraft, 

yaw axis is perpendicular to the plane of the wings with its origin in the centre of 

gravity and directed towards the bottom of the aircraft, 

pitch axis is perpendicular to the yaw axis and is parallel to the plane of the wings with 

its origin at the centre of gravity and directed towards the right wing tip and 

roll axis is perpendicular to the yaw and pitch axes, with origin at the centre of gravity, 

directed towards the nose of the aircraft. (Aircraft Rotations, NASA, 2010). 
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Figure 5: Vehicle fixed coordinate system and aircraft rotations (Source: Aircraft Rotations, 
NASA, 2010). 

 

Rotation angles are measured with inertial measurements unit (IMU) which uses 

accelerometers and/or gyroscopes. Inertial navigation system (INS) is similar measurement 

device to IMU, thus compared to IMU does not need integration with GPS. Both IMU and 

INS measure besides orientation angles also the velocity of an aircraft. Relative position 

between all measurements devices mounted on a platform must be known or calibrated. 

 

Luhmann (2010, p. 48-67) describes standard model for camera calibration with many 

additional IntOri parameters as well as simultaneous estimation of the IntOri and ExtOri 

parameters.  
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2.6 Least square adjustment with observation equations 

Least square (LS) adjustment is an adjustment commonly used in numerous of tasks. The LS 

is easy to apply, since normal equations (ATA, see Eq. 11) are linear, it gives unique solutions 

and it allows statistical testing of estimated parameters. In this work it was used to adjust the 

measurements of the image points to re-calculate the position of the helicopter at the time of 

acquisition, i.e. the ExtOri parameters of the helicopter (see 2.5 Central projection in space). 

 

Adjustment is required in case of redundant measurements. Mathematically formulated, the 

over determinate system of equations is solved using least square adjustment. 

 

Fundamental condition of least square adjustment � 4 5�6.�7� 5� � 8)*�� ���	�9��
where: 5� residual of ith observation, 

p weight of ith observation. Weights are expressing relative values of observations and 

n number of independent observations, i = 1,..., n. 

 

Mathematical model consist of functional and stochastic model. 

 

Functional model is set by n independent observation equations :; � <�=>��with n adjusted 

observations and u adjusted unknowns =>. 
 

Stochastic model is set by covariance matrix of observations�?@@ � A@@BC, where Pbb is weight 

matrix with diagonal elements equal to variance of each observation. If the observations are 

dependant, non-diagonal elements of Pbb are co-variances of belonging observations.  

 

If observation equations are not linear, they are first linearized by approximation to a first-

order Taylor series expansion. Coarse values x0 for unknowns are used in first iteration and 

least square adjustment is applied iteratively.  � => � =D E F=>�� ���	�
+��
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� 5> � G � F=> ( '�� ���	�

��
where: =D coarse value of unknowns, 

v residuals of observations, 

A design matrix (matrix of coefficient by the linear observation equations), 

w observations, 

^ least squares estimate of the parameter beneath and 

∆  increments to the assumed values of unknowns. 

 

(Kraus, 1993, p. 384-386, Stopar, 2006, 2007). 

2.7 Texture mapping  

Texturing an existing city model enhances its visualisation and also enables extraction of 

information from textures. Sufficiently accurate texture mapping is a preliminary condition 

for improving the city model with information gained from textures. In this thesis, a possible 

method for improving the detection of the edges of surfaces of a building is researched. These 

edges of surfaces should be further used to cut out the part of image and project it into the 3D 

model space as a texture. Furthermore, textures in the model can be evaluated.  

 

Definition of texture is not precise due to its wide variability and it differs according to 

application. The following two quoted definitions of the texture are sufficient for the 

application in this thesis. Texture refers to the properties that represent the surface or structure 

of an object (Sonka, 2008, p.718) or more generally, »a multidimensional image that is 

mapped to a multidimensional space« (Heckbert, 1986). 

 

Texture mapping is a technique in which a texture or a raster images are mapped onto a 

surface in a 3D scene, as wall paper is applied on wall (Heckbert, 1986, Catmull, 1974). 

»Texture mapping can be used to define many surface parameters besides colour. These 

include the perturbation of the surface normal vectors to simulate bumpy surface (bump 

mapping), transparency mapping to modulate the opacity of a translucent surface, specularity 
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mapping to vary the glossiness of a surface, and illumination mapping to model the 

distribution of incoming light in all directions« (Heckbert, 1984) and also many others.  

 

The advantage of texture mapping is that details are added to the scene or model and it 

appears more realistic. Example of a realistic texture mapping is draping an ortophoto that is a 

geometrically corrected aerial photography over a DTM. According to the CityGML standard 

(2008) this is LOD0. A 3D building model in the LOD2 can have high-resolution textures 

mapped onto the surfaces (CityGML, 2008); the textures can be digitally designed or cut out 

of photographs (images) and clipped to the edges of model (Figure 6).  

 

 

Figure 6: Textured 3D building model of TUM in LOD2 with IR textures (Author: D. 
Iwaszczuk). 

 

Urban information can be extracted from images (Hoegner, 2009), thus texturing an existing 

3D city model with textures extracted from images can enhance the model. Further, detailed 

analysis of textures in 3D city model requires considering the geometry of the captured scene 

and accuracy of data acquisition (Kolecki, 2010) in order to apply sufficiently accurate 

geometrical position to detected detail in an image.   
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3 METHODOLOGY 

This chapter is divided into two parts; the first part describes the survey that was made about 

the feature extraction from infrared images and the second part presents the developed 

methodology which is tested on a dataset, described in chapter 4.  

3.1 Overview of feature extraction from infrared images 

To find an appropriate feature extraction method, a survey was made on a sample IR image 

sequence. Choosing an appropriate feature extraction method is of great importance for 

developing a method for refining orientation parameters of a sensor. Aim of this survey about 

feature extraction is to find appropriate features, which are good representation of buildings 

and will enable automatic matching with a building model. In this section a few examples of 

the feature extraction are shown. This survey was done in program Halcon MVTec1. 

Examples are shown on a sample image number 13200, 4th stripe; the main campus of the 

Technische Universität München (TUM) is seen in the scene.  

 

Choosing the appropriate feature type and parameters for feature extraction procedure is not a 

trivial task and it requires detailed study, which was performed within the thesis in this 

section. Changing one parameter of feature extraction operator/procedure significantly 

influences the amount and appearance of extracted features. The feature type and parameters 

should be chosen in regards to given data and should be the same for one task. However, this 

problem is addressed later in developing a methodology, but it is not the main focus of this 

thesis. Images in the IR domain have lower accuracy compared to images in the VIS domain. 

���������������������������������������� ��������������

�

1 Halcon is a commercial software product specialised for tasks for machine vision, produced by MVTec. (Halcon, 2010). 
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3.1.1 Subpixel edge extraction  

Subpixel edges extraction operation detects step edges by linking the edge points into the 

edges (contours). A Variety of edge filters can be used for edge detection, naming a few: 

Sobel, Canny, Derichle, Shen, etc. Filtering an image is a local image operation that uses 

small neighbourhood of a pixel and its radiometric values as an input values to calculate new 

radiometric value in output image in order to enhance chosen characteristic (Sonka, 2008). In 

digital image processing filter is represented by usually a square matrix of a size n × n, also 

called filter matrix. The values of a filter matrix depend on a desired effect of filtering, i.e. for 

relatively small filter widths, ca. up to 11 × 11 pixels (px), different filters result in similar 

edge detection. Edge operators can be applied in recursive way or conventionally using filter 

masks. Computational cost of recursive filters is independent of filter width, whereas it 

significantly increases for non-recursive filters for increasing filter width.  

 

Both represented examples of subpixel edge extraction are realized through filter masks (non-

recursive). Three parameters of subpixel edge extraction can be set:  

- alpha is width of a filter matrix (e.g. when alpha = 3 px, the size of a filter matrix is 

3 � 3 px), 

- threshold value low and 

- threshold value high. 

 

Both threshold values are set for automatic acceptance or rejection of candidate points for 

contours. 

 

Gaussian smoothing kernel of size alpha is used to determinate quadratic polynomial in x and 

y direction for each image point. Both are direction of axes in pictorial coordinate system that 

are directions of rows and columns of digital image. The parameters of the polynomial are 

used to calculate the line direction for each pixel. Candidates for edge points are pixels, which 

have local minimum in the second directional derivatives perpendicular to the line direction. 

Candidates for edge points that have the second derivative smaller than low value are 

automatically rejected, and points with the second derivative higher than high value are 

automatically accepted to be a part of contours (extracted edges). Other points can be also 
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accepted as a part of the edge if they are connected to secure points. Thus, secure points 

influence their surroundings.  

 

Input variables: input image, alpha, low, high. 

Output variables: subpixel contours, edge direction, edge amplitude. 

Sobel filter  

Edge detection using the Sobel filter is convolving the image with the selected filter in 

horizontal and vertical direction. The Sobel filter matrix is a numerical approximation of the 

gradient of the image intensity function. 

 

 

Figure 7: Extracted subpixel contours using Sobel filter (red). Input variables are: input image 
13200, alpha: 3 px, low: 20, high: 40.  

�

�



30 
Avbelj, J. 2010. Co-registration of three-dimensional building models with image features from infrared video sequences. 

Graduation Thesis – University studies. Ljubljana, UL FGG, Dep. of Geodetic Engineering, Geodesy. 

�

Canny Edge Detector 

Subpixel edge extraction using the Canny filter (edge detector) is realized through 

convolution of the image with the Gaussian filter.  

 

 

Figure 8: Extracted subpixel contours using Canny edge detector (red). Input variables are 
input image: 13200, alpha: 3 px, low: 20, high: 40.  

3.1.2 Subpixel contours approximated by line segments 

Buildings are usually rectangular, with straight roof ridges and building details, e.g. 

chimneys, windows, are often describable by simple geometric forms. For these reasons, 

buildings can be good represented by straight line segments, instead of arcs or other curves.  

Both subpixel edge extraction operators mentioned in 3.1.1 result in contours that represent 

detected edges. Straight line segments are simpler features and can be easier processed in 

matching algorithm than contours. In this section, a possible algorithm to approximate 

contours with line segments is described. Moreover, contours can be approximated not only 

with line segments, but also with circular and elliptic arcs.  
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Firstly, contours are smoothed with the purpose to make the algorithm more robust and to 

avoid very short line segments (Figure 10). Secondly, the polygonal approximation is done by 

the Douglas Peucker algorithm (Douglas, 1973), in literature also referred to as the Ramer 

algorithm. The Douglas Peucker algorithm is applied in an analogue way as in Stilla et al. 

(1995). The article also includes stepwise image representation of the algorithm on p. 12 

(Stilla, 1995, p. 9-15). A parameter maximum distance in pixel units must be set. The 

contours are segmented in a way that the Euclidian distance of the approximating polygon to 

the contour is at most the value set with parameter maximum distance. When segmenting 

contours with lines and arcs, a two-step algorithm is proposed to decrease the computational 

effort of the procedure. The result is segmented contours (polygons). 

 

In the next step, these segmented contours are approximated by the longer line segments 

using, e.g. linear regression. Line fitting can also be calculated with other methods, using 

weighted mean square algorithm, etc. Some properties can be set to improve approximation of 

line fitting, for instance maximum number of contour points used for computation, number of 

points at the beginning and end of the contour to be ignored for fitting. A statistic method is 

used to estimate the standard deviation of the distances from the contour points. Special 

attention should be dedicated to detecting outliers that can significantly influence line fitting. 

Outliers are not taken into computations; however, the quantity of the outliers is controlled 

with the clipping factor, i.e. a scaling factor for the standard deviation. Outliers can be 

excluded or weighted with a small pound in the iterative line fitting algorithm.  
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Figure 9: Smoothed extracted subpixel contours on image number 13200 (eight colour 
representation). These extracted contours are approximated by line segments shown in Figure 
10. 

 

Figure 10: Extracted line segments (red) which are the result of approximating subpixel 
contours with line segments on image number 13200.  
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3.1.3 Region extraction with minimum covering rectangle or circle 

Firstly, a threshold values low and high are applied on the image. All pixels with radiometric 

values in between low and high value are accepted. Instead of specified threshold values, 

automatic threshold values can be used, which are defined according to the histogram of the 

image and pre-used Gaussian smoothing filter. Secondly, the selected pixels are connected 

into regions using the neighbourhood. For extracting foreground, 8-neighbourhood is 

recommended (Halcon Reference Manual, 2010). 

 

Regions with an area larger than the value areaLimMin and smaller than the areaLimMax are 

selected. Appropriate regions can also be selected according to different criteria, e.g. height, 

width, maximum diameter, orientation of region or more complex criterion. Regions extracted 

by this procedure can have gaps; therefore an algorithm to fill them up can be applied. This 

step of gap removal is important, if further method is processing region margins. At last, 

minimum covering circle and rectangles are calculated for each region and their centre of 

gravity. 

 

Input variables: input image, low, high, neighbourhood, areaLimitMin, areaLimitMax. 

Output variables: regions, minimum covering rectangle (circle), centre of gravity of minimum 

covering rectangle (circle). 
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Figure 11: Extracted regions (red contours) with defined minimum covering rectangle (blue) 
and the centre of gravity of minimum covering rectangle (red cross). Input variables are: input 
image: 13200, low: 135 high: 225, neighbourhood: 8 px, areaLimitMin: 500 px, 
areaLimitMax: no max limit, algorithm to fill up holes is applied. 

 

Figure 12: Extracted regions (red contours) with defined minimum covering circle (blue) and 
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the centre of gravity of minimum covering rectangle (red cross). Input variables are input 
image: 13200, low: 135 high: 225, neighbourhood: 8 px, areaLimitMin: 500 px, 
areaLimitMax: no max limit, algorithm to fill up holes is applied. 

3.1.4 Förstner points extraction 

The procedure of Förstner point detection described in this section is mainly adapted from the 

Halcon Reference Manual (Halcon Reference Manual, 2010). The Förstner operator was 

introduced in Förstner and Gülch (1987) as well as in Förstner (1993); the operator was later 

named after the author.  

The Förstner operator detects significant points in an image that differ from the 

neighbourhood. There are two types of Förstner points; so called »junction points« which 

appear on the intersection of image edges and »area points«, where colour or brightness 

differs from the surrounding neighbourhood.  

In the first step the point regions (inhomogeneous, isotropic regions) are extracted from the 

image. 

 

Smoothed matrix M is calculated 

 H � I � J 4 �K=� "�L7�MC 4 �K=� "� � K%� "�7�MC4 �K=� "� � K%� "�7�MC 4 �K%� "�L7�MC N, (Eq. 12) 

where: 

(lx, c), (ly, c) are first derivatives of each image channel c and 

S is smoothing matrix, and can be realized with Gaussian or Sobel derivatives. 

 

Gaussian smoothing: The derivatives are computed with Gaussian derivatives of size 

sigmaGrad and smoothing is performed by a Gaussian of size sigmaInt. 

Mean smoothing: Derivatives are computed with the Sobel filter size 3 × 3, smoothing is 

performed by the mean filter size sigmaInt x sigmaInt. 

 

Degree of inhomogeneity in the image is calculated 
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 )*#8#OP*P)/% � /1&"P�H�. (Eq. 13) 

 

Degree of the isotropy of the texture in the image 

 )$#/1#.% � � � QR���S�����R�S�T. (Eq. 14) 

 

Further examined points in the second step must fulfil the condition 

 <U1/P1�P=&8)*PV�.#)*/$� 

 �)*#8#OP*P)/%�./� W X1P$K*#8�GYZ��)$#/1#.%� W X1P$I&.P�� (Eq. 15) 

where: 

pt is image point, defined with row and column and 

threshInhom, threshShape are threshold values for inhomogeneity and isotropy, 

respectively. 

 

In the second step, two optimization functions for each resulting point from the first step are 

calculated. These optimization functions average for each point the distances to the edge 

directions (for »junction points«) and the gradient directions (for »area points«) within an 

observation window around the point. Averaging is performed with the same smoothing 

matrix set in the first step, but with different matrix size, that is a Gaussian of a size 

sigmaPoints or with the mean filter of size sigmaPoints × sigmaPoints. Local minimum of the 

optimization functions define the extracted Förstner points with subpixel precision. For each 

extracted point the corresponding covariance matrix is returned with the precision of the 

calculated position. However, to obtain the actual precision value, the amount of image noise 

should be estimated.  

 

The nature of the Förstner point operator is that corners often results in pairs of extracted 

points; a »junction point«, where the edges of the corner actually meet, and one »area point« 

inside the corner. These doublets can be eliminated with regards to the precision of the point 

position. The point with higher precision of position is accepted. 
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Input variables: input image, sigmaGrad, sigmaInt, sigmaPoints, threshInhom, threshShape, 

smoothing. 

Output variables: coordinates of »junction« and »area« Förstner points and covariance 

matrixes for each coordinate of extracted points. 

 

 

Figure 13: Extracted »junction« (red cross) and »area« (blue cross) Förstner points. Input 
variables are input image: 13200, sigmaGrad: 1.0, sigmaInt : 3, sigmaPoints: 4.0, 
threshInhom: 300, threshShape: 0.1, Gaussian smoothing is set, doublets are not eliminated. 

 

Doublets are not eliminated, because »junction points« are points of interest in this work and 

»area points« do not represent significant, physically interpretable objects that could be 

connected with a building model.  
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3.1.5 Straight edge extraction 

Extraction of straight edge segments results in dataset of coordinates of the start and end 

points of extracted line segments. For edge detection the Sobel filter is used, which is based 

on the matrixes A and B (Eq. 16 and 17), filter size can be set, for example 3�× 3, 5�× 5, etc.  

 

The Sobel filter matrixes sizes 3�× 3 are 

 G � ! 
 � 
+ + +(
 (� (
,� (Eq. 16) 

and 

 [ � !
 + (
� + (�
 + (
,	 (Eq. 17) 

 

Convolving an image for one pixel with A and B results in a and b. The filter response, i.e. 

amplitude, of pixel is than calculated 

 <)2/P1�1P$.#*$P � \�\]\@\^ . (Eq. 18) 

�

The candidates for edge points are pixels with a filter response larger than the specified 

threshold value for minimal amplitude minAmp. These edge point candidates are thinned and 

split into straight edge segments. Additional two parameters can be specified, the first one to 

control the maximum allowed distance between an edge point and its approximating line 

(MaxDist), and the second one to remove extracted line segments shorter than the set 

minimum length (minLength). This operation usually does not return closed object contours. 

 

Input variables: image, filter size, minAmp, maxDist, minLength.  

Output variables: coordinates of begin and end points of extracted straight edges.  
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Figure 14: Extracted straight edges (red). Input variables are input image: 13200, filter size: 
9 × 9 px, minAmp: 18 px, maxDist: 5 px, minLength: 10 px 

 

In this section five different feature extraction algorithms in IR images are presented. In the 

Table 3 a comparison between them with regards to the desired properties is made. The 

suitability of each of the presented feature type and extraction is discussed in the next section 

3.2. 

 

�  
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Table 3: Comparison between feature extraction algorithms. 
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2 Computational cost was defined for computational time in HALCON 9.0 MVTec software, all computations were made on 
same personal computer. Computational time may vary on different settings of procedures – especially with larger smoothing 
matrixes and with more complex procedures. 
 
3 Stability over sequence is defined by a visual check on a sample of image sequence consisting of 128 frames. 
�
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3.2 Developed method 

An automatic texturing process requires geo-referenced data and a very precise co-registration 

between images and faces of the model. Before texturing, polygons of the building model 

should be projected to the images using coarse orientation parameters. By a matching process 

of projected polygons and features extracted from the image, the values of the projection 

matrix should be improved. The aim of this work is to investigate the automatic feature 

extraction in infrared images to improve orientation parameters of the sensor.  

 

Image registration is a process of overlying two or more images of the same scene taken at 

different times, from different viewpoints, and/or by different sensors (Zitová, 2003). Image 

registration is described in detail in the section 2.3. In this example, scene to model 

registration is carried out, i.e. the IR images (sensed images) of the scene and a 3D building 

model (reference image) are registered. 

 

The main stress of this thesis is the developed method presented in this section. Firstly, the 

argumentation for choosing two feature types is given and secondly the method is described 

in six steps (Figure 15). 
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Figure 15: Diagram of methodology steps for feature extraction and matching. 
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3.2.1 Feature extraction from infrared image sequence 

In this section a comparison and evaluation of the described feature detection algorithms 

presented in the section 3.1 is given. Secondly, the argumentation is given for choosing the 

Förstner point extraction and extraction of intersection points.  

3.2.1.1 Discussion of different feature types  

Feature extraction is widely used in computer vision, image processing and analysis tasks and 

its applications. Local features provide a compact description of the searched objects in an 

image based on their appearance. In the previous section 3.1 some feature extraction 

algorithms are described on a sample IR image. Deciding which type of feature(s) is 

appropriate for a given task is a first step of image registration. This section focuses on pros 

and cons of the features described in the section 3.1 with regards to the given problem.  

 

Extracted features should be: 

- highly distinctive, with low probability of mismatch, 

- numerous and possible also regularly spread over image, 

- easy to extract, 

- physical interpretable and 

- in certain range invariant to image deformation e.g., image noise, changes in 

illumination, uniform scaling, rotation and minor changes in viewing detection. 

 

Dealing with image sequences in subsequent frames nearly the same scene is acquired 

multiple times from different viewing directions. Illumination has different effect on the same 

object in subsequent frames. When acquiring the same scene in different flight directions, the 

angle of illumination also changes. In images acquired in oblique view, the same object 

appears in significantly different size in different frames. If the acquisition device is forward 

looking, the same acquired object will appear relatively small when in top of the image and 

relative large when in lower part of the image. For all these reasons, stability of extracted 

features over a sequence should also be observed. A stabile feature in sequence is the one, 

which appears in several subsequent frames on same position. If the coverage of images is not 
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complete or occlusions are present, detected features in sensed image must have enough 

common elements with reference image to enable enough registered points for matching. The 

method of feature extraction should have sufficient localisation accuracy. Detected features 

should also be invariant to the certain degree to the image noise. (Zitová, 2003). 

 

An ideal feature detection algorithm should detect all the features with high accuracy, 

independently of small changes in images mentioned in previous paragraph. In addition, the 

matching algorithm should ensure full completeness, i.e. the quotient between the number of 

matched points and all the possible matching points, and correctness of the matching 

algorithm. For refinement of the ExtOri parameters a connection between the same points in 

subsequent frames is not relevant, whereas for re-calculation of the IntOri parameters it is 

necessary for gaining higher accuracy.  

 

When dealing with real datasets, a decision for a feature extraction is a compromise between 

the above mentioned desired properties and the computational effort in regard to given task. 

For instance, smoothing of image improves feature detection but is simultaneously worsening 

localisation accuracy. Feature extraction step cannot be entirely separated from the feature 

matching, because a number and type of extracted features directly influence the chosen 

matching algorithm and its computational effort. A higher number of extracted features results 

in higher computational cost of feature extraction and matching algorithm. 

 

Buildings are in 3D building models often described with planes (surfaces) or wire-model 

(line segments or polygons). Models with a higher LOD are not required as resolution of the 

IR domain does not enable to extract very small and sophisticated details. This intuitively 

leads to the decision, that extracted features should be simple. 

Regions 

Extracted regions appear to be less stabile over a sequence than extracted contours, line 

segments or points and are therefore less appropriate for matching with model. However, the 

algorithm for the region extraction results in a stabile number of regions as well as stabile 

central point of minimum covering circle or rectangle over a sequence. These properties could 
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be further researched and potentially used for connection between frames or for estimation of 

coarse ExtOri parameters. Completeness of extracted regions that correspond to roofs is 

comparing to other represented feature extraction operators the highest, but has worse 

localisation accuracy. In addition interpretation problems can occur, because one region does 

not always represent one roof.  

Subpixel edge extraction 

Optimal edge detection algorithm should have: 

- good detection - low probability of failure to detect an existing edge or detecting a 

non-existing edge, 

- good localisation – a detected edge should be as close as possible to a true edge and 

- single response - a true edge should be represented with only one detected edge. 

(Sonka, 2008, p. 144). 

 

Subpixel edge extraction results in contours with high geometrical position precision. A 

question arises, whether the subpixel feature extraction is required according to the resolution 

of acquired images (geometric, radiometric), accuracy of model, demanded accuracy of result 

and ability of applied edge extraction operator. There is no uniform answer to this question; a 

decision should be made in regards to the given task. Moreover, a precision of the extracted 

feature does not directly result in a better localisation of the building edges. For instance, a 

comparison between detecting features in image in the IR and the VIS domain is presented. A 

characteristic of the IR domain is that it appears blurred. In images acquired in the VIS 

domain, the building edges are sharper, with larger edge response and therefore easier 

detectable than in the blurred IR domain. Consequently, very high precision of feature 

extraction in images in the IR domain is not reasonable and does not improve localisation. 

What is more, geometric resolution of the IR cameras compared to geometric resolution of the 

VIS cameras is lower.  

 

The computational cost of the subpixel edge extraction can quickly increase when using larger 

smoothing matrixes or when the difference between the low and high threshold values for 

immediate rejection and acceptance of pixels is larger. The number of extracted contours is 
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sufficient, thus many of the extracted contours are very short and they represent objects in 

space, which are not part of building models, e.g. cars. Even with comprehensive 

manipulation of the input parameters of the edge extraction, completeness of the edge 

detection is low. Short contours in majority represent non-existing or unwanted edges, and 

can be excluded from further computation with a simple length threshold value. A good single 

response of extracted edges can be achieved by adjusting parameters of the edge detector to 

the data type.  

Contours approximated by line segments 

Straight line segments are simpler feature as contours and they can satisfactorily represent 

buildings in building models. When approximating contours with straight line segments, 

different strategies can be applied (section 3.1.2). A computational time increases several 

times when calculating the approximation of contours with line segments. The line segment 

approximation requires additional input variables and possibly also detection of outliers. 

These additional variables make the procedure of line segments extraction complicated and 

difficult to control. Nevertheless, straight line segments appear to be the appropriate feature 

type for representing buildings in the IR image sequence. 

Straight edges  

Detection of straight edges has, in comparison to the previous described contour extractions 

and the contours approximated by the line segments extraction, lower computational cost. The 

localisation is not significantly different, whereas in comparison to the contours, the 

completeness is approximated by the line segments extraction a little worsen. On the other 

hand, there are fewer detected lines which do not correspond to the model lines. Weakness of 

all described edge detectors is that the contours or line segments often do not finish at the 

edge points of buildings. That can require more complicated matching methods. 

Förstner point extraction 

The Förstner point extraction algorithm results in many extracted points frequently spread 

over image. The extraction method has more input parameters than the extraction of straight 

edges. However, the Förstner operator is an uniform standard procedure and not a sequence of 
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different standard procedures, so the influence of the input variables can be easier controlled. 

»Junction Förstner points« representing edges of buildings are stabile over a sequence, thus 

the extracted »area Förstner points« and »junction points« which represent smaller object in 

scene are less stabile. The localisation accuracy is in general lower in comparison to the 

straight edge extraction. A Benefit of this operator is the number of extracted points and the 

simplicity of extracted feature type (point). A disadvantage is the low completeness in 

detection – the Förstner operator fails to detect some existing edge points and results in 

detecting many other objects, e.g. cars. The problem with the completeness of feature 

detection is similar to detection of contours. For both operators, manipulating the input 

parameters can results in higher number of distinctive extracted features, but simultaneously 

results in detection of more non-relevant objects in scene. 

3.2.1.2 Points, the chosen feature type 

The choice for the feature types was made in regards to the sections 3.1 and 3.2.1.1% With the 

intention to simplify, the matching algorithm extracted points and the straight line segments 

are suitable for searching the correspondences. For the matching extracted lines or line 

segments and building model lines projected into images, a correlation function is needed. 

Computational effort of line-to-line matching method is high and additionally, extracted line 

segments often do not finish at the edge points. Problems of multiple responses of edges and 

detection of non-desired edges (extraction of objects that do not represent building edges) 

could aggravate the matching algorithm. The point-to-point matching algorithm has 

significantly less computational cost. The Förstner points can be used for feature extraction. 

However, the Förstner point extraction has shown smaller localisation inaccuracy on the 

example image which might noticeably influence the ability of the matching algorithm. 

 

The straight edges extraction is efficient with regard to the computational cost, the 

representativeness of buildings as it was in detail explained in the section 3.2.1. To overcome 

the previously mentioned problem of the line-to-line matching computational effort and the 

problem of extracted line segments which do not end on building edges, intersection points of 

extracted straight segments can be computed. Two different point types are extracted and used 
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for matching: the Förstner points and the intersection points of extracted straight edge 

segments.�

�

Intersection points of the extracted straight edge segments (intersection points) are calculated 

using intermediate step of extracting straight edge segments (described in section 3.1.5). the 

distances d between all the end points of all extracted straight edge segments are calculated. 

The maximum distance limit between the edge points dmax in pixels is set. In other words, 

around each endpoint of extracted straight edge segments, a circular search space with radius 

size dmax is established. A large dmax would result in a higher number of extracted intersection 

points, though most of them could not be physically interpretable. Furthermore, this would 

cause more wrong matches between model and extracted points. For all pairs of end points, 

which fulfil the condition d � dmax, an intersection angle � of the belonging edge segments is 

calculated. The intersection angle should be between the limits �min and �max = � - �min where 

� _ [0, �]. The intersection angles between the nearby buildings edges are seldom very acute 

or very obtuse. Angle limits �min and �max prevent the algorithm to result in points defined by 

two almost parallel lines. Almost parallel lines should be avoided, because they are most 

likely a result of their multiple edge response, i.e. bad feature detection, not very accurate 

detection of two parallel edges or in parallel edges of the same building on different heights, 

which appear very near in images acquired in oblique view. For all pairs of edge points that 

fulfil both conditions: d � dmax and �min � � � �max the intersection points are calculated. Both, 

angular and distance limits simultaneously restrict the intersection point algorithm to result in 

many non-reliable points. In other words, around each endpoint of the extracted straight edge 

segments a circular search space with the radius size dmax may also be defined as an ellipse or 

rectangle with the intention to weight the influence of the distance and angle limits. 

 

Extraction of the intersection points and Förstner points is chosen as the appropriate feature 

extraction to assure good extraction. Both extraction algorithms are evaluated and compared 

in chapter 4. 
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3.2.2 Modification of 3D building models 

The term modifying a 3D building model is used for changing the model in a way to be more 

appropriate for given task but without influencing the geometry. First part of this section 

addresses the problem of hidden surface determination as a consequence of the viewing angle. 

The second part explains the meaning of excluding the ground points of the building model 

before the matching algorithm is applied.  

Hidden surface determination in 3D models 

Representation of 3D models requires dealing with invisible planes and parts of planes. 

Depending on the viewing point, different surfaces of the 3D model are seen. In order to 

ensure the best possible matching between the projected model and the extracted features, 

occluded parts of the projected model should be switched off. Thus, some false matches can 

be avoided.  

 

Planes or part of planes are not seen due to: 

- viewing angle (self-occluding planes in the model, orientation of a model plane 

according to the position of acquisition device) and 

- other objects between the acquisition device and plane. 

 

Hidden surface determination algorithms are implemented in almost all commercial 

accessible software. The main problem occurs with partly occluded surfaces. In computer 

graphic this is called a clipping problem and is non-trivial task. However, several clipping 

algorithms have been introduced. Special attention should be paid to choosing the appropriate 

software for hidden surface determination as some of them are using rasterization, ray-

geometry, etc. For instance, when projecting a building model into a 2D image, some 

polygons are occluding and they create fictive intersection points. Some algorithms only hide 

the part of polygon that is not seen, which is sufficient for representation, but might not be 

satisfying for all analysis of data. In this work, the vector data of fictive intersection points are 

required.  
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Ground points 

In visual (VIS) domain the boundary lines between objects in an image are easily recognized. 

The precision, with which a certain boundary line can be detected, depends on spatial and 

radiometric resolution. When analyzing the IR images characteristic of the IR spectrum 

should be considered, e.g. in IR the images appear to be blurred. Two neighbouring points 

acquired in the IR domain have similar radiometric value and the boundaries are not as exact 

as the VIS domain. Blurred appearance of objects in the IR images depends more on materials 

of the observed objects and their physical characteristics and not only on the colour. In images 

in the IR domain, differences in radiometric values between low parts of facades and 

pedestrian areas are small, therefore only roof edges are considered. Ground points can be 

switched off using DTM or by a threshold value in lowlands. Alternatively, roof surfaces can 

be extracted from a model based on the direction of a normal vector of a plane.  

3.2.3 Feature matching 

Feature matching can be performed using area-based or feature-based methods. Area-based or 

correlation-like methods merge the step of feature extraction and matching. The matching 

process is based on the pre-defined size matrix cut out from a reference image, which is 

searched in sensed image using e.g. correlation, Fourier method. Area-based methods are 

usually not dealing with detection of salient objects. (Zitová, 2003). In this method, feature 

extraction is performed separately and is described in the section 3.2.1.  

 

Feature based methods are searching correspondence pairs of extracted features from sensed 

and reference image. 3D building models are a computer representation of the scene and are 

projected into a 2D IR image with coarse orientation parameters. In an IR image point 

extraction is used to define significant points (sensed, extracted points). Establishing 

correspondences between model points projected into the IR image and extracted points is 

based on spatial relation among them. Point-to-point matching algorithm is applied. For each 

model point a circular search space with the radius R is defined in pixels. Different cases of 

relations among extracted points and model points occur. If an extracted point from a sensed 

image is in the search space of a model point, they are connected, a correspondence is found. 
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In case that none of the extracted points is in the search space of a model point, there is no 

correspondence. In case that two or more extracted points are in the search space of a model 

point, both or all of them are registered to the model point. In case that one extracted point 

lies in two or more search spaces of model points, it is connected only to the nearest model 

point. Found correspondences are stored in a correspondence matrix using point identifiers.  

3.2.4 Least square adjustment of orientation parameters 

The co-registrated points are adjusted with the LS algorithm and corrected orientation 

parameters are calculated. Input data for the LS adjustment are observations, i.e. picture 

coordinates of extracted points which correspond to the model points, model points in world 

coordinate system and coarse orientation parameters. Orientation parameters are unknowns in 

adjustment. The equations for the estimation ExtOri and/or IntOri are non-linear, thus the 

parameters are improved iteratively. It is assumed that the camera is calibrated (principal 

point, focal length and additional parameters), and that lever arm and boresight corrections, 

shift of the GPS measurement unit according to the centre of IMU are known. A time 

correction is calculated and applied on the data, thus IMU and GPS measurements refer to the 

centre line of the acquired image. With the LS adjustment ExtOri and IntOri parameters can 

be estimated if there are enough correspondence points found and the measurements are 

sufficiently accurate. The IntOri parameters can be assumed constant for one flight, therefore 

for estimating the IntOri parameters, correspondence between frames should be considered.  

 

Statistical testing of the estimated orientation parameters (unknowns) with the LS adjustment 

is given with: standard deviations of each orientation parameter, calculated in variance-

covariance matrix and mean square error (MSE) D̀L= �&��
 root mean square error (RMSE). 

3.2.5 Re-projection of 3D buildings model 

With corrected orientation parameters a model should be projected into the image with the 

same algorithm used for first projection of a model.  
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3.2.6  Iteration of algorithm 

Corrected orientation parameters can be calculated iteratively. Feature extraction is separated 

from the matching extracted features with model points. Therefore, projection of a model with 

corrected orientation parameters into the image can be used as coarse orientation parameters 

in second iteration.  

 

The radius R of a circular search space can be set as fixed for all iterations, or adaptive 

according to the iteration. If the coarse orientation parameters have high accuracy, a fixed 

radius is sufficient. With less precise coarse orientation parameters in the first iteration, some 

mismatches might be present than influence the adjustment. In the second iteration, some of 

the mismatches can be avoided using smaller search space for correspondence between model 

points and extracted points.  
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4 EXPERIMENT 

This chapter is divided in seven main sections. Firstly, the used data are described. Secondly, 

the test of the applied method on the dataset is given and thirdly, the results are presented. 

Then, the comparison of two point extraction algorithms is presented and the problem of the 

used 3D building model is addressed. Finally the results are discussed. Application of the 

method is realized with two commercial programming software packages, i.e. Halcon MVTec 

and Matlab4. 

4.1 Data description 

In this section, an overview of used data and acquisition of them is given. Firstly, IR image 

sequence acquisition is presented with characteristic of the IR camera. Secondly, the GPS/INS 

measurement required for calculations of coarse ExtOri parameters are described. Last, the 

modelling of the 3D building model is paraphrased. 

4.1.1 The infrared image sequence and geometry of acquisition 

The thermal images were taken in a dense urban area with a high resolution IR camera AIM 

640 QLW FLIR with the frame rate of 25 images per second, mounted on a platform carried 

by helicopter. The flight height was approximately 400 m above ground level and the camera 

was forward looking with oblique view of approximately 45° (pitch angle). The resolution of 

images is 640�× 512 pixels, the acquisition of one image lasts for 0.04 s, thus a rolling shutter 

effect is noticeable. Geometry of acquisition is shown in Figure 16. 

 

���������������������������������������� ��������������
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'
�Matlab is a numerical computing environment and high-level technical computing language developed by MathWorks.�
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Figure 16: The geometry of the acquisition of IR image sequence. (Source: Stilla, 2009). 

 

A helicopter flew over the test area, i.e. main campus of the TUM, four times recording a 

sequence of IR images. From a sequence four stripes were cut out, each with approximately 

125 images (frames). The trajectory of the helicopter flight and the direction of flight for each 

stripe are shown in Figure 17. 

 

 
Figure 17: Test area and flight 
trajectory of the helicopter. (Source: 
Hebel, 2007). 

  
 

 
Figure 18: An IR image number 13200 from the 
4th stripe. (Source: Stilla, 2009). 

25
0
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4.1.2 GPS and Inertial data 

ExtOri parameters used in calculations in this thesis are the result of the extended system 

calibration proposed by Kolecki et al. (2010). First, the acquisition of raw GPS and INS data 

and then the extended system calibration are presented.  

Raw data 

The helicopter was equipped with the GPS/INS Applanix POS AV 510 system that measures 

position, GPS time of the measurements, altitude/heading and current speed of the helicopter 

(approximately 160 km/h). GPS antenna is mounted on the helicopter cockpit and registers 

position with the frequency of 1 Hz. Differential global positioning system (DGPS) 

corrections were not available for the time of the flight campaign, thus GPS/INS data have 

lower accuracy. The frequency of the inertial measurement unit (IMU) output is 200 Hz 

measuring roll-pitch-yaw angles. The GPS measurements are used to correct the IMU drift 

with Kalman filtering (Kolecki, 2010). Measured WGS 84 coordinates refer to the IMU 

centre, which is close to the IR camera. For each frame a time of acquisition is known; this 

enables the assignment of the ExtOri parameters to an appropriate image.  

 

Initial projection of a building model in the IR image using GPS/INS ExtOri parameters have 

shown about 8° misalignment of the camera and IMU coordinate system in pitch rotation. 

Roll and yaw misalignments are smaller (Kolecki, 2010). Therefore a direct texture mapping 

cannot be utilized and the ExtOri parameters were corrected.  

Extended system calibration 

Only approximate IntOri parameters and distortion values of the IR camera were known. A 

system calibration was done solving extended bundle adjustment with camera self calibration. 

Approximately 140 control points were measured on an accurate reference stereo model 

(Stilla, 2009). Camera optics parameters that were estimated and/or corrected are: camera 

constant, principal point coordinates, radial and tangential distortions coefficients, y axis 

scaling and skewness in x and y direction.  
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Figure 19: Relative position of IR camera and IMU presented with leverarm vector (l) and 
IMU misalignment (boresight). (Source: Kolecki, 2010). 

 

Kolecki et al. (2010) and Stilla et al. (2009) suggested extended system calibration. The 

estimated values are IntOri, camera optic parameters, leverarm and boresight corrections, 

position systematic error and its change in time. Leverarm parameters (l) i.e. the distance 

between the camera centre and the IMU centre are assumed to be constant during the flight 

(Figure 19), whereas boresight parameters (angular misalignment) are corrected with a linear 

model. The GPS measurements are used to correct the IMU data every second; within a 

second, the position of the IMU is calculated based on gyros and accelerometers. Particularly 

due to the lack of DGPS data, the GPS measurements have a certain level of inaccuracy which 

appears to be nearly systematic and therefore the GPS shift was modelled. The time of 

acquisition assigned to each frame does not exactly correspond to the IMU measurement 

which also results in systematic time error that was estimated. 

 

Applied corrections improve the projection of a building model into IR images and the 

remaining misalignment is only a few pixels. Kolecki et al. (2010) address an effect of 

platform vibration, which could be observed in angular measurements of the IMU unit over 

time. The frequency of vibrations for yaw and roll angles is estimated to 10 Hz and the 

amplitude exceeds 0.5°. The effect of the platform vibrations causes smaller jumping of the 

building model projected into the IR image sequence which is observable in subsequent 

frames. 
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4.1.3 The 3D building model 

A 3D wire model in LOD2 was produced with semi-automated method in photogrammetric 

software INJECT5. The model was produced from aerial images and is showing generalized 

view of the main campus of the TUM. Due to generalization, some inaccuracies in the 

position of the buildings edges occur. (Frey, 2006). 

 

 

Figure 20: 3D building model of the TUM and surroundings produced with semi-automatic 
method. (Source: Frey, 2006, p. 13). 

�

Semi-automatic method consists of manual selection of a building type (primitive), choice of 

two or three significant building points and a distinctive ground point. With this input data 

INJECT models a 3D building, adjusting primitive to the given data. The number of 
���������������������������������������� ��������������

�

(
�INJECT is a software for semi-automatic extraction of 3D structures from digital aerial images, emphasising the building 

extraction. The software also allows extraction of vegetation, water and roads. An overlapping satellite or aerial images are 

required with known ExtOri and IntOri parameters, as well as height data.  

�
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parameters that are calculated for each building depends on the selected building type 

(primitive) and is estimated using Random Sample Consensus (RANSAC). Primitives can be 

created manually and added to the program. Overall, this model required 18% of manual 

modelling; the rest was done with the semi-automatic method. The accuracy of the model was 

estimated to 0.5-1.0 m which is sufficient for urban planning, but it is unclear if it is sufficient 

for combination and registration with IR images. (Frey, 2006). 

4.2 Test 

The method described in the section 3.2 is applied to the data set presented in the section 4.1. 

From each stripe (#1-#4) three images are taken, one from the beginning, one from the middle 

and one from the end (Table 4). Two point extraction algorithms are used, i.e. Förstner points 

and intersection points of extracted straight edge segments (intersection points).The tests are 

made projecting the whole 3D building model into the image and also on two sub models. 

 

Table 4: Selected IR images from all four stripes.  

 Image number from  
Stripe  Begin Middle End Stripe limits  
#1 2011 2061 2120  [02003, 02128] 
#2 4982 5032 5091  [04974, 05099] 
#3 10140 10190 10249  [10132, 10257] 
#4 13142 13200 13259  [13141, 13268] 

 

Firstly, a methodology is tested on a sub model of one and two buildings (Figure 21) and 

secondly applied to the whole model.  
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Figure 21: Two sub models: Building 1 (left) and two buildings (right). 

 

For building 1, a subset of images from stripe #4 is taken and an extended evaluation of the 

adjusted ExtOri parameters is carried out. Coarse ExtOri parameters are changed and the 

efficiency of method is observed. 

 

Table 5: Selected 95 IR images from stripe #4. On this subset of images an extended 
evaluation of the adjusted ExtOri parameters was made.  

 Image number  
Stripe from to Number of images 
#4 13141 13235 95 

4.2.1 Modification of the 3D building model 

A 3D building model was produced in specialised photogrammetric software and the format 

of the output is not directly compatible with the import data formats of other available 

software. Therefore determination of hidden surfaces was not completely carried out.  

 

An algorithm for back-face culling is applied. For each plane in the building model a normal 

vector is calculated. Then angles between the normal vectors of planes and the vector of 

acquisition device are determined. The planes with larger or equal angle than 90° to the 

normal vector of a photo plane are not considered (Figure 22 a, b).  
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Figure 22: Projection of a building from a 3D space to a 2D (a). Invisible planes are removed 
by the algorithm described above (b). Self-occluding planes and part of planes of the model 
are not detected. A full algorithm should detect occluded planes (c, marked blue) and 
determinate and calculate the coordinates of the intersection points (c, red cross). The result of 
such an algorithm is presented in d. Visualisation of a building with solid planes appears to 
give the same result, but no clipping points are calculated. Oblique view of the acquisition 
device also causes apparent overlapping of buildings in images. 

 

Ground points of the model were switched off and are not taken into further calculations. 

Roof edges and corners were determinate from the 3D coordinates of planes. A unit right 

circular cone, around z-axes, with vertex in origin of the coordinate system and aperture 30° 

is determined. If a normalized normal vector of the plane lies in space determinate with the 

cone the plane belongs to roof, else the plane belongs to the ground or wall of a building. In 

Figure 23 and Figure 24 the 3D building model in LandXplorer with solid plane 

representation and a wire-model representation is visualised, respectively. 
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Figure 23: Visualisation of the 3D building model in LandXplorer CityGML Viewer. Roofs 
are in dark red and other buildings surfaces in brown. 

 

 

Figure 24: The 3D building model in wire-model representation (LOD2); roofs are in red and 
other building surfaces in blue. Model is projected into the image number 13142, stripe #4. 
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4.2.2 Feature extraction and matching algorithm 

Feature extraction with the Förtsner point algorithm and straight edges extraction is described 

in section 3.1. Argumentation for the choice of the feature type – points and in the procedure 

for extraction of the intersection points of extracted straight edge is given in section 3.2.1. 

Extracted (sub) model is projected with the coarse ExtOri parameters into the image with 

extracted features. Furthermore, the correspondence between extracted points and model 

points is searched. On example of straight edges extraction and intersection points the feature 

extraction and matching algorithm are presented in this section; Building 1 is used as a sub 

model and is projected in the image number 13200, stripe #4. In the Appendix B extraction 

and matching parameters for Förstner points and straight edges which were used in this test 

can be found.�

Straight edge extraction and classification  

Extracted features – lines are represented in an image together with the projected 3D sub 

model. A threshold value for a minimum length of the extracted lines is applied (minLength), 

described in section 3.1.5. The extracted line segments are grouped into three groups on the 

basis of length in pixels, two threshold values are set. Lines with a length below the 

threshold 1 are represented in red, lines with a length between values threshold 1 and 

threshold 2 are represented in yellow and the longest lines are coloured green and have a 

length equal or larger than threshold 2. Lines with a length equal or larger than threshold 1 

value are taken into further computation. Threshold values for length of lines should be 

chosen regarding to the relative size of building edges in an image. To each extracted line, a 

quality parameter is assigned 

 Quality of line = 

  a b##Vc2P*O/�1PV�2)*P$� d /1P$#2V�
H)VV2Pc�/1P$#2V�
 e 2P*O/�%P22#'�2)*P$� d /1P$#2V��[&Vc�2P*O/�O1PP*�2)*P$� W /1P$#2V�� f. (Eq. 19) 

 

Longer lines, in these case green and yellow lines, are assumed to be more reliable. A larger 

weight value can be set for green lines in LS adjustment. Extracted straight line segments and 

classification is shown below in Figure 25. 
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Figure 25: Projected sub model building 1 and extracted straight edge segments with traffic 
light colour coding. In red: short, not reliable lines (10-16 px); in yellow: middle length lines 
(16-32 px); in green: the longest, most reliable (>32 px); In dark blue: roof of sub model; In 
light blue: other surfaces of sub model. 

Intersection points 

Intersection points between lines with »good« and »middle« quality are calculated. Additional 

two parameters are set according to the description in section 3.2.1.2, these are:  

dmax maximum distance limit between edge points in pixels and 

�min minimum intersection angle between two line segments.  
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Figure 26: Extracted intersection points (red cross) calculated from extracted straight edges 
with a length larger or equal than 16 px (in green and yellow). Parameters for intersection 
points calculations: dmax=10, �min=30°. 

Matching of the building model and extracted points  

Points are connected to the model (Figure 27, a). A circular search space R is defined for 

searching for correspondence between projected model lines and extracted points (section 

3.2.3).  

 

 
Figure 27: Matching of the building model and extracted points (left) and the re-projection of 
model (b) with refined ExtOri parameters. Left (a): Extracted lines (in green and yellow) and 
intersection points (red cross) connected with the projected model (blue); The connection is 
represented by cyan dashed line, R=5. Right (b): Projection of sub model with initial ExtOri 

a) b) 
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parameters (light blue); Projection of sub model with adjusted ExtOri parameters, after 
matching algorithm was applied (dark blue).  

LS adjustment of ExtOri parameters and re-projection of the 3D building model 

LS adjustment of the ExtOri parameters and a re-projection of the 3D building model are 

described in sections 3.2.4 and 3.2.5. The results of these two method steps are seen on an 

example in Figure 27, right.  

 

Registration between the projected building model and the extracted Förstner points is equal 

to the one described above from »Matching of the building model and extracted points« on. 

There was no quality parameter set for the extracted Förstner points. However, the results of 

the Förstner point extraction are also covariance matrixes with the precision of the calculated 

position for each Förstner point (see section 3.1.4).  

4.3 Results 

The results are presented on the sample dataset of 12 images, three from each of the four 

stripes; first, two sub models are projected into this sample images, and secondly, the whole 

model. Additionally, more tests were made on the 95 subsequent images of the 4th stripe, 

projecting the sub model building 1 into them. In this section, the results of these extended 

tests are presented, including manual movement of the projected model before applying the 

matching algorithm. 

4.3.1 The sub models: building 1 and two buildings 

Sub models building 1 and two buildings presented in Figure 28are projected into the 12 

selected images from four stripes. As initial ExtOri parameters the corrected values are used. 

Out of 12 sample images, on which the method was tested, the sub model building 1 (and two 

buildings) is seen in ten images (Figure 28 and Table 6). 
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Figure 28: Sample images for testing the method with marked sub model building 1 (blue 
ellipse). 
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Table 6: Description of the position of the sub model building 1 on the sample images.  

 Position of building 1 is sample images from all four stripes 
Stripe #1 #2 #3 #4 
Begin  Upper-right part of 

image. 
Upper left 
corner 

Not in scene. Upper 
middle part 

Middle Middle–right part 
of image. 

Left part of 
image in middle 

Upper middle part of 
image, party occluded by 
other building 

Middle of 
image. 

End  Lower right corner Lower left 
corner 

Middle of image, but 
partly occluded by other 
building. 

Not in scene. 

 

Applying method on the sub model of building 1 gives poor result, using Förstner point 

extraction as well as intersection points (Table 7 and Table 8, respectively). Texts 

corresponding to images on which the method results in improving the ExtOri parameters are 

highlighted in grey. We consider that the re-adjusted ExtOri parameters are improved, if the 

projected building model is better aligned to the observed buildings. 

 

Table 7: Results of applying the method on 12 sample images; A sub model building 1 and 
Förstner point extraction are used. Highlighted: Text corresponding to sample images where 
ExtOri parameters are improved. 

Förstner point (building 1) 
Stripe #1 #2 #3 #4 
Begin Two 

correspondences 
found.  

Worse ExtOri 
parameters (smaller 
translation of 
projected model, 
shrunken). 

Not in scene. Corrected ExtOri. 

Middle  Worse ExtOri 
parameters (moved 
model). 

A bit shrunken 
model, relative OK. 

Worse ExtOri 
parameters due to 
wrong matching. 

Corrected ExtOri 

End  Worse ExtOri 
parameters (smaller 
translation and 
rotation of model). 

A bit shrunken 
model, relative OK. 

Rotated, poor 
matching due to 
occlusion. 

Not in scene. 

     



68 
Avbelj, J. 2010. Co-registration of three-dimensional building models with image features from infrared video sequences. 

Graduation Thesis – University studies. Ljubljana, UL FGG, Dep. of Geodetic Engineering, Geodesy. 

�

Table 8: Results of applying the method on 12 sample images; A sub model building 1 and 
extracted Intersection points are used. Highlighted: Text corresponding to sample images 
where ExtOri parameters are improved. 

Intersection points (building 1) 
Stripe #1 #2 #3 #4 
Begin Corrected ExtOri 

parameters. 
Worse ExtOri 
parameters 
(rotation, due to 
almost singular 
normal matrix in 
LS adjustment). 

Not in scene. A bit worse 
ExtOri 
parameters, due 
to small number 
of corresponding 
points. 

Middle  OK 
 
No significant 
improvement or 
worsening of 
ExtOri parameters. 
 

Smaller worsening 
of ExtOri 
parameters. 

Not enough 
corresponding 
points found. 

Corrected ExtOri 
parameters. 

End  Rotation due to 
small number of 
corresponding 
points. 

No significant 
improvement or 

worsening of 
ExtOri parameters. 

Not in scene. 

 

Testing the methodology on the same image set and sub model two buildings has shown some 

additional problems with wrong correspondence between model and extracted points. 

Matching of the sub model two buildings and the extracted Förstner points is unsuccessful, 

only two examples out of 12 sample images result in improved ExtOri parameters, i.e. the 

efficiency of method is 2/12. Furthermore, the efficiency of the method tested on the sample 

dataset with sub models can also be written with the denominator 10, e.g. 2/10; since out of 

12 sample images on ten the sub model two buildings (and building 1) are in scene. Matching 

based on extracted intersection points is slightly better, but as well results in 3/10 better, 2/10 

not significantly improved or worse and other 5/10 worse ExtOri parameter, of which one is 

evidently a mismatch.  

 

The position of sub models in image significantly influences the possibility of a successful 

matching algorithm; the inspected building should not be occluded and should lie in the 

bottom middle to the middle of the image. Radial and tangential distortions have bigger 

influence on border of the image; the upper part of the image is more deformed and buildings 

appear relatively smaller to the ones on the bottom of the image due to oblique view 
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(geometry of the acquisition). Other evident problems when searching for a correspondence 

between extracted points and sub model of two buildings are model incorrectness and poor 

feature detection due to small edge response and other extraction problems. 

 

Model incorrectness and inappropriate building modelling lead to some mismatches. 

Building 1 is simple and correctly modelled, whereas the quality of the sub model of two 

buildings is questionable. The larger building (of the two buildings sub model) has a flat roof 

with a massive fence around. There is another floor with smaller area compared to the main 

building on the top of the building. In the 2D building model this is modelled as building in a 

building. Closeness of edges of the building in a building causes mismatching. A different 

matching strategy would be more appropriate in this case, i.e. line to line matching. In stripe 

#3, the building 1 is occluded and because the intersection points are not calculated, this 

disables the correction of the ExtOri parameters.  

 

In stripes #1 and #2, the building 1 has a low edge response, therefore less features are 

extracted on the edges of the building 1. This leads to a smaller number of corresponding 

points and less reliable adjustment. Good localization of extracted features is required, so 

smaller inaccuracies in position consequently have a large influence on re-adjustment of the 

ExtOri parameters. 

4.3.2 The whole model 

A method is applied on the 12 sample images into which the whole building model is 

projected. For projecting the model into the image, corrected ExtOri parameters are used; the 

extracted features are Förstner points and intersection points. The method is not applied 

iteratively. 

 

Firstly, the number of extracted, corresponding and unique corresponding points in the sample 

dataset is inspected for extraction of Förstner and intersection points. The results are 

presented in the Table 9 and Table 10.  
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Table 9: Number of extracted, corresponding and unique corresponding points for extracted 
Förstner points on a sample dataset. 

Förstner point extraction 
R = 5 px 

Image number 
Number of 

extracted points 
Number of 

corresponding points 
Number of unique 

corresponding points 
2011 491 78 78 
2061 559 102 101 
2120 475 113 109 
4982 307 92 91 
5032 355 79 76 
5091 399 59 56 

10140 456 46 42 
10190 305 49 47 
10249 170 45 45 
13142 232 68 66 
13200 329 76 75 
13259 403 51 51 

 

Number of extracted points is a total number of extracted points which are possible candidates 

for a correspondence with the projected model. For the Förstner point extraction, this number 

is equal to number of the junction Förstner points and for the intersection points, this number 

is the number of intersection points between the extracted straight lines under condition of the 

angle limit and distance limit (see section 3.1.4). 

Number of corresponding points is a number of extracted points which correspond to the edge 

points of the projected model found in the circular search space of the radius R. (For example: 

in Figure 27 points which have drawn cyan dashed line between model point and extracted 

point). 

R is the radius of the circular search space for searching correspondence between the 

projected model into the image and the extracted features [px]. 

Number of unique corresponding points equals the number of model points which have at 

least one correspondent extracted point.  
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Table 10: Number of extracted, corresponding and unique corresponding points for extracted 
intersection points on a sample dataset. Highlighted text corresponds to the images on which 
the applied methodology is efficient. 

Intersection points 
Distance Limit = 10 px, Angle Limit = 30 °, threshold 1 = 16 px, threshold 2 = 32 px, 

R = 5 px 

Image 
number 

Number of extracted lines No of 
extracted 

points 

Number of 
corresponding 

points 

Number of unique 
corresponding 

points »Good+middle« »Bad« 
2011 244 231 83 36 31 
2061 314 238 134 56 47 
2120 288 229 112 43 32 
4982 257 150 106 40 34 
5032 210 168 82 36 31 
5091 227 182 70 27 22 

10140 209 276 43 13 12 
10190 217 166 65 21 17 
10249 147 99 54 22 16 
13142 162 118 47 27 21 
13200 206 172 74 41 30 
13259 274 236 58 17 15 

 

Number of extracted lines is a total number of extracted lines from an IR image. 

»Good + middle« is a number of extracted lines with a length higher or equal to the 

threshold 1 value in pixels. 

»Bad« is a number of extracted lines with a length lower than the threshold 1 value in pixels. 

 

The comparison of the numbers of extracted, corresponding and unique corresponding using 

Förstner and intersection point extraction is presented in Graph 1, that is comparing data from 

Table 9 and Table 10. 
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Graph 1: Comparison of number of extracted, corresponding and unique corresponding points 
for Förstner and intersection points extraction.
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The number of unique corresponding points is with Förstner point extraction algorithm the 

same or just a bit smaller than the number of all corresponding points. On the other hand, this 

difference is bigger with extraction of straight edge segments. Non-unique corresponding 

points can be caused as a result of a non-single edge or corner response of extracted feature, 

closeness of two model points and extracted edge points as well as due to the projection – in 

some viewing directions, roof edges can appear very close to the ground points, or to the 

points of the nearby buildings. Model incorrectness causes some mismatches (see section 

4.5).  

 

Matching over the sequence with the described methodology applied on the whole building 

model is not efficient with the given data. Further investigation on a different 3D building 

model would be required for a better estimation of the quality of the method. 

4.3.3 Subsequent images of stripe #4 (sub model) 

Building 1 is projected into the images of stripe #4, 13141-13235. Images with lower numbers 

were acquired earlier. The image number 13141 is the beginning of the stripe #4 and the 

image number 13235 is the last image of this stripe where the whole sub model building 1 is 

in scene (Figure 29).  

 

 

Figure 29: Position of sub model building 1 (red ellipse) used for testing the method. Left: 
Image number 13141; Middle: 13188; Right: 13235. Red arrow is flight direction. 
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Graph 2: Comparison of number of corresponding points in first and second iteration of 
matching algorithm. (Corrected ExtOri parameters are used, a method is applied on a sub 
model building 1 on images 13141-13235, flight #4; extracted features are intersection 
points). 
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registered points are needed. Moreover, an overdetermined system is a consequence of more 

than three registered points, which leads to a LS adjustment. Used mathematical models are 

the co-linearity equations in which the ExtOri parameters (X0, Y0, Z0, Roll, Pitch, Yaw) are 

six unknowns. Each image point (extracted and registered point) has (x, y) coordinates in the 

picture coordinate system. Solving the system of linear equations with Matlab, a build-in 

operator, called matrix left division is used. This operator allows non unique solutions. Using 

this operator, a minimum of two correspondence points is required, however the output 

solution should be additionally evaluated.  

 

Matrix left division »\«. A\B solves the symbolic linear equations A * X = B for X.  

 g )<�8 � *� h I%$/P8�)$�$iU&1P	���=&"/�$#2U/)#*�)$�<#U*V	)<�8 j *� h k5P1VP/P18)*PV�$%$/P8	 lHI�$#2U/)#*�)$�<#U*V)<�8 d *� h U*VP1VP/P18)*PV�$%$/P8	 G�:&$)"�$#2U/)#*�')/&/��8#$/�8�*#*mP1#�"#8.#*P*/$�)$�<#U*V	 n,  (Eq. 20) 

where: 

A is coefficient matrix size m�× n 

 

(Solving Linear Systems of Equations, Matlab, 2007). 

Results for manually moved sub model 

In order to evaluate the efficiency of the method, initial, e.g. corrected values, of the ExtOri 

parameters are manually changed. Two examples are represented, first example results in 

successfully re-calculated the ExtOri parameters (Figure 30) and in the second example the 

problems and possible causes for unsuccessfulness of the algorithm are presented (Figure 31). 

 

A sub model building 1 is projected into the image number 13170, stripe #4; in Figure 30 cut-

out of the image is seen. Corrected coordinates are manually moved for 5 m in position (X, Y, 

Z direction), initial rotation angles are equal to the corrected ExtOri parameters. In all three 

iterations six points are extracted and registered with the model. However, in the 1st iteration, 

there is one mismatch, which does not appear in the further iterations (Figure 30, a, red 

arrow). In first column, extracted lines (yellow, green) and projection of the sub model 

building 1 with the initial ExtOri parameters in the IR image is seen. The initial parameters 
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for the 1st iterations are corrected ExtOri parameters, which are moved; in the 2nd iteration, the 

initial parameters are adjusted parameters from the 1st iteration, etc. In dark blue: roof of the 

sub model; In light blue: other surfaces of the sub model; Red cross: extracted intersection 

points. In second column, movement of the model is presented: in the ith iteration in dark blue 

and ith-1 iteration in light blue colour, where iteration i =1, 2, 3 and i-1 is projection of the sub 

model with moved ExtOri parameters. R = 15 px. The result is the corrected position of the 

acquisition device, that are corrected ExtOri parameters. 

 
Figure 30: Example of successful stepwise extraction and matching algorithm. 
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Table 11: Comparison of ExtOri parameters, raw, corrected and manually moved (for 5 m in 
position) initial values, and after applying the matching algorithm iteratively. 

Data Type/  
iteration 

Image 
number 

X0 
[m] 

Y0 
[m] 

Z0 
[m] 

Roll 
[degrees] 

Pitch 
[degrees] 

Yaw 
[degrees] 

RAW 13170 4468328.9 5334433.9 928.6 -2.439 34.160 297.268 

 

Corrected 13170 4468322.1 5334430.6 920.9 -1.868 42.727 297.270 

1st iteration 13170 4468292.5 5334439.8 937.9 -2.485 39.020 297.274 

2nd iteration 13170 4468292.5 5334439.8 937.9 -2.485 39.020 297.274 

 

Moved 13170 4468327.1 5334435.6 925.9 -1.869 42.727 297.270 

1st iteration 13170 4468239.0 5334355.6 972.3 -12.668 35.981 297.290 

2nd iteration 13170 4468292.5 5334439.8 937.9 -2.485 39.020 297.274 

3rd iteration 13170 4468292.5 5334439.8 937.9 -2.485 39.020 297.274 

 

For the example presented in Figure 30, two iterations are sufficient to achieve the same result 

applying LS adjustment for the ExtOri parameters when the corrected coordinates are moved 

for 5 m, (initial angles remains corrected values of ExtOri parameters) (Table 11). In the 

presented example, the iteration of the matching algorithm is efficient. However, the relative 

large residuals of the unknowns in the LS adjustment implies on the presence of systematic 

errors, possibly caused by i.e. the localisation inaccuracies of the extracted features, 

insufficient resolution of the IR image sequence or characteristics of the observed spectrum. 

 

In Figure 31 an example of wrong matching is shown. The sub model building 1 is projected 

into the image number 13164; the coordinates are manually moved 5 m in position, angular 

values are the same as the corrected ExtOri parameters.  
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Figure 31: Example of an unsuccessful stepwise extraction and matching algorithm. 

�

Figure 31: Red arrow points to the extracted points which were connected to the wrong 

building corner. Blue arrow points to the correctly extracted points, but due to the large 

misalignment they are not connected to any model points. Points marked with green are 

correctly extracted and matched to the model. Nevertheless, only four points are registered, of 

which one is mismatched. In this case the method results in worsening the coarse ExtOri 

parameters. This is a logic consequence of the LS adjustment, because the LS adjustment is 

efficient when all the measurements are free of gross errors; measurements should be 

corrected for all systematic errors. Denotations in Figure 31 are similar to the ones in Figure 

30 (see above). 

 

1st iteration 

3rd iteration 

2nd iteration 

a) 

b) 

c) 
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Efficiency as a quality parameter of the developed method is more detailed described in 

section 4.6�Evaluation. 

Comparison of the adjusted ExtOri parameters using manually moved and corrected 

ExtOri parameters as initial values 

In Graph 3 and Graph 4 each ExtOri parameter – raw, corrected and adjusted (X0, Y0, Z0, 

roll, pitch, yaw) – is shown for the sequence of the images 13141-13235 from the stripe #4. 

Red line represents adjusted ExtOri parameters, cut line means no data, which is a 

consequence of not sufficient number of corresponding points or singularity of a normal 

matrix in LS adjustment. Raw and corrected data are presented with blue and green line, 

respectively. All the plots have as independent variable on horizontal axes normed time in 

seconds. Time is normalised to the acquisition of the frame 13141, stripe #4, time = 0. 

 

ExtOri parameters were re-calculated according to the described methodology. Three 

iterations were performed – result of the 3rd iteration is presented in graphs - and for given 

accuracy and dataset 2 are sufficient. Iteration is not considered as an iteration of the LS 

adjustment, but as one iteration of the matching algorithm. In the 1st iteration initial projection 

of the building model is made using coarse ExtOri Parameters, in the 2nd iteration adjusted 

ExtOri parameters are used for projection of the model, etc. Iterations can improve the 

number of corresponding points, which is more obvious when using less accurate coarse 

ExtOri parameters for initial values (see also Table 11).  
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Graph 3: Comparison of raw, corrected and adjusted ExtOri parameters using corrected 
ExtOri parameters as initial values. (Sub model building 1, images 13141-13235, stripe #4). 

 



81 
Avbelj, J. 2010. Co-registration of three-dimensional building models with image features from infrared video sequences. 
Graduation Thesis – University studies. Ljubljana, UL FGG, Dep. of Geodetic Engineering, Geodesy. 

�

 

�

Graph 4: Comparison of raw, corrected and adjusted ExtOri parameters using manually 
moved ExtOri parameters for 3 m as initial values. (Sub model building 1, images 13141-
13235, stripe #4). 

 

Comparing graphs, when for initial ExtOri parameters corrected ExtOri are used (Graph 3) 

and graphs when for initial value for ExtOri parameters 3 m in position is added (Graph 4), 

the algorithm is less efficient when the building is more on the edge. This can be observed in 

the graphs - the red line has higher amplitude, more outliers are present and the line is cut. For 
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example, Graph 4, around time 1.8 s in plots for X, Y, Z, roll and pitch over time it is clearly 

present an outlier. It can be assumed that the correction of ExtOri parameters for this frame is 

wrong.  

 

 

Figure 32: Area of the oblique image (red rectangle) where the inspected single building 
should lie that applied method gives good results. 

�

It can be concluded, that a correction of ExtOri parameters by the described method is 

relatively efficient, if the inspected building lies in the centre and centre bottom area of the 

image (Figure 32). Preliminary condition is that the inspected building is not occluded by 

other objects. The same conclusion was made while testing the sample 12 images, three from 

each of the four stripes. If the building lies in the lower centre part of the image, it is relatively 

bigger compared to other object in the upper part of image, due to oblique view of the camera. 

Therefore, better extraction is possible in this image area and consequently more efficient 

matching. Apart from oblique view of the acquisition device, other reason, why the procedure 

is not so efficient on the borders of the image, could be the influence of not sufficiently 

calibrated and/or corrected IntOri parameters, i.e. lens distortions.  

4.4 Comparison between extraction of Förstner points 

and intersection points 

Two used point feature extraction algorithms are compared and discussed in this section. It is 

demonstrated, that the intersection points are in this example more robust compared to the 

extracted Förstner points.  
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The Förstner point extraction results in a higher number of extracted points in comparison to 

the points of extracted straight edge segments (intersection points), but most of them cannot 

be connected to the model. If the initial projection of a 3D building model is very good, the 

matching and the LS adjustment Förstner point algorithm usually ensues in equal adjusted 

ExtOri parameters as the straight edge detection. However, in some cases due to the small, 

highly distinguishing object on the roofs or nearby building corners in the projection, false 

matching is more common when using Förstner points than extracted features. For instance, 

in Table 12, c, extracted Förstner points marked with red array all belong to the ground points, 

but appear on a near roof edge due to the projection in 2D. False corresponding points 

significantly influence the LS adjustment and the adjusted ExtOri parameters are worse than 

initial coarse ExtOri parameters (Table 12, b, c). 

 

In the Table 12, a correct matching based on extracted Förstner points, which leads to 

corrected ExtOri parameters, is presented. When the model is manually moved (Table 

12, b, c), i.e. when less exact ExtOri parameters are used, a small number of corresponding 

points and wrong matching results in not corrected ExtOri parameters. Table 12, a, b and d 

show only 2 iterations, more were calculated, but the result is the same within the accuracy of 

the measurements. Using extracted intersection points for matching results in the same 

adjusted ExtOri parameters – for manually moved (Table 12, d) or corrected initial values of 

the ExtOri parameters. Therefore, in the Table 12, d only the example with manually moved 

model, on which the matching algorithm is applied, is shown. What is more, the radius R of 

the circle, in which correspondence between extracted points and model edges is searched, 

has greater influence with the Förstner point extraction. An enlargement of the search space, 

i.e. a bigger radius R results in more corresponding points as well as more not correctly 

corresponding points (comparing Table 12, b and c). The algorithm using intersection points 

results in the same adjusted ExtOri parameters, if the R ≥ 10 px. Low limit is crucial and 

needs to be adopted according to the expected accuracy of the coarse ExtOri parameters. 
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Table 12: Comparison between Förstner point extraction and intersection points. Left column:
extracted point (a-d) is presented with a red cross; Green and yellow lines are extracted 
straight edges (d); Connection between extracted point and model point is in cyan dashed line 
(a-d); Green tick is correctly extracted and registered point (b,
all corresponding points are correct (a,
c). Middle column: In light blue: Projection of the sub model with adjusted (or manually 
moved) ExtOri parameters; In dark blue: sub model a
Right column: Parameters of the feature extraction and matching algorithm and explanation of 
images in middle and left column.

b) 

a) 

registration of three-dimensional building models with image features from infrared video sequences
– University studies. Ljubljana, UL FGG, Dep. of Geodetic Engineering, Geodesy.

: Comparison between Förstner point extraction and intersection points. Left column:
d) is presented with a red cross; Green and yellow lines are extracted 

straight edges (d); Connection between extracted point and model point is in cyan dashed line 
d); Green tick is correctly extracted and registered point (b, c) if in bottom right corner than 

all corresponding points are correct (a, d); Red arrow points to the wrong registered points (b, 
c). Middle column: In light blue: Projection of the sub model with adjusted (or manually 
moved) ExtOri parameters; In dark blue: sub model after the matching algorithm was applied. 
Right column: Parameters of the feature extraction and matching algorithm and explanation of 
images in middle and left column. 

 
Förstner point extraction 

 

 

Corrected ExtOri parameters
X, Y, Z, roll, pitch
 
R = 10 px 
 
Extracted points: 16
Correctly corresponding points:
 

 

 

Moved ExtOri parameters
X+3 m, Y+1.5 m, H+2
roll, pitch yaw are same as in 
corrected parameters.
 
R = 10 px 
 
 
Extracted points: 16
Correctly corresponding points:
1 wrong detected point and 
connected to the model.
 

dimensional building models with image features from infrared video sequences. 
Ljubljana, UL FGG, Dep. of Geodetic Engineering, Geodesy. 

: Comparison between Förstner point extraction and intersection points. Left column: 
d) is presented with a red cross; Green and yellow lines are extracted 

straight edges (d); Connection between extracted point and model point is in cyan dashed line 
right corner than 

d); Red arrow points to the wrong registered points (b, 
c). Middle column: In light blue: Projection of the sub model with adjusted (or manually 

fter the matching algorithm was applied. 
Right column: Parameters of the feature extraction and matching algorithm and explanation of 

Corrected ExtOri parameters 
h, yaw. 

Extracted points: 16. 
Correctly corresponding points: 4. 

Moved ExtOri parameters 
m, H+2 m,  

oll, pitch yaw are same as in 
corrected parameters. 

Extracted points: 16. 
Correctly corresponding points: 3. 
1 wrong detected point and 

model. 
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Moved ExtOri parameters 
X+3 m, Y+1.5 m, H+2 m, 
roll, pitch yaw are same as in 
corrected parameters. 
 
R = 15 px 
 
 
Number of extracted points: 16 
 
1st and 2nd iteration: 
4correctly corresponding points, 
2 wrong detected points and 
connected to the model.  
 
3rd iteration: 
4 correctly corresponding points, 
3 wrong detected points and 
connected to the model. 

 
Intersection points 

 

 

 

Moved ExtOri parameters 
X+3 m, Y+1.5 m, H+2 m, 
roll, pitch yaw are same as in 
corrected parameters. 
 
R = 15 px 
 
 
Extracted points: 6. 
Correctly corresponding points: 6. 
 

c) 

d) 
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4.5 The 3D building model problems 

The automation of a whole process from acquisition to the textured 3D building model is a 

complex task. In this thesis, only a part of it was researched. The 3D building model is an 

input data, however it is not faultless. The inaccuracies, faults and method of modelling 

influence the efficiency of the developed method. This is why this section presents the 

problems of the used 3D building model. 

 

The model was inspected in a wire model representation and in LandXplorer with solid 

surface representations from several viewing angles. However, some of the deficiencies still 

cannot be seen in both representations. The 3D building model was produced with the semi-

automatic method in program INJECT. Due to export problems there are several severe 

deficiencies, of which some are marked in the Figure 33 and shown in detail on images in 

Figures 34-38.  

Figure 33: Problem areas of the 3D building model of the TUM visualised in LandXplorer 

a b 

c 

d 

e 

f 

f 

Problematically 
modelled buildings 
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CityGML Viewer. The examples of problematic areas are detailed shown and explained in 

Figures 34-38. 

�

In reality, many buildings are touching, but in a model the modelled buildings often appear to 

have gaps or are overlapping. As a consequence there are more model points, which do not 

exist, but can be connected to the extracted points. If these points are near the existing 

building edges, false matching cannot be avoided. There are several cases of gaps between 

roof and the belonging building. The buildings should be clipped together and connected with 

their roofs. Perpendicularity and parallelism of buildings is not maintained. Some buildings in 

the model are not on the correct height and/or are not placed on the ground. An additional 

semantics and attributes of surfaces in model could improve matching algorithm. For 

instance, small roof structures could be excluded from matching algorithm, etc.  

 

The detail visualisation and explanation of problematic areas of the 3D building model of the 

TUM presented in Figures 34-38. The marked areas of Figure 33 are shown in larger scale. 

 

 
Figure 34: Overlapping of buildings and roofs (Figure 33, a). 

Additional edge points that do not exist (encircled) are shown in .�#	
�� *'. Green arrow 

points to an overlapping of building 1 and 2. Building 1 is modelled as many small building 

segments, which are not touching in the model and are overlapping with the building 2. 

Consequently there are additional roof points (green circles) very near the ridge. Buildings 2 

and 3 are overlapping and there is another additional point in the model. With yellow circle 

the area where the model has three different points with different coordinates, but should only 

be one point or three points with same coordinates, is marked. 

 

1 

2 3 
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Figure 35: Lengthen buildings (Figure 33, b). 

In the model are presented lengthened buildings (Figure 35), i.e. a roof of a building does not 

end at the wall or roof of a touching building. There are additional points (green circles) as a 

consequence of poor modelling. 

 

 
Figure 36: Gaps between buildings (Figure 33, c). 

An opposite problem of overlapping of the buildings are the gaps between them (Figure 36). 

This influences the matching algorithm in the same way as overlapping does. Due to 

automatic modelling roof ridges are in some cases not oriented in the same direction. 

 

 

Figure 37: Building in building (Figure 33, d). 

Roof structures, e.g. chimneys, fence on flat roofs, are not modelled as a structure attached to 

the roof but as separate buildings that extend to the ground level (Figure 37). In most of such 

cases it does not influence the matching algorithm. Thus, closeness of the roof structures and 

roof edges can result in false matching and in inaccuracies of the corrected ExtOri parameters, 
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that are not easy detectable. A problem of building-in-building modelling significantly 

aggravates automatic texturing. 

 

 

Figure 38: Typical multi-problem area in the building model (Figure 33, e). 

In the Figure 38 overlapping of buildings (green arrow), building within a building (yellow 

arrow), and non-parallel buildings (green arrow) can be seen. Coloured building is wrongly 

modelled – all four green encircled roof edges cannot be seen from any viewing direction, 

because they are overlapped by two other buildings, this is wrongly modelled. Blue encircled 

roof edge can be detected from this viewing direction, whereas yellow encircled roof point 

can be detected from some other viewing directions. 

4.6 Evaluation 

On a dataset of the sub model building 1, stripe #4, images 13141-13235 (95 images) an 

evaluation of the method was made. First, the efficiency of the algorithm, then the 

completeness and correctness of the extraction and matching algorithm were observed. The 

evaluations of the method and the quality parameters were checked manually.  

4.6.1 Efficiency of the method 

The method is efficient, if the model re-projected with the adjusted ExtOri parameters is in a 

better position than with not adjusted ExtOri parameters. The visual check was made. Two 

examples of the algorithm efficiency are shown in the section 4.3.3�(Figure 30 and Figure 31).  
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  �<<)")P*"%�#<�&2O#1)/8 � opq @R���r�����R�����q �sRQ��7Q������RQ�q �QR�opq @R���r��q �tRu , (Eq. 21) 

where: 

Number of images is 95 for the given sample dataset. 

 

 

Figure 39: Projected building 1 into the image number 13200, stripe #4 with the corrected and 
manually moved ExtOri parameters. In red: the corrected ExtOri parameters are use for 
projection; In orange, yellow, green, blue and violet, the corrected ExtOri parameters are 
moved in position for 1-5 m, respectively. 

 

Firstly, the initial, i.e. the corrected coordinates were manually moved for 1 to 5 m with 1 m 

increment in position in X, Y and Z direction (Figure 39, Eq. 22-24). Then the roll, pitch yaw 

initial values were moved for 10’ to 50’ with increment of 10’ (Eq. 25-27). 

 

 v � v�7�����E �Vv�'P1P�Vv � �
� �� w �  x ��Vvy8z, (Eq. 22) 

 { � {�7�����E �V{�'P1P�V{ � �
� �� w �  x ��V{y8z, (Eq. 23) 

 | � |�7�����E �V|�'P1P�V| � �
� �� w �  x ��V|y8z, (Eq. 24) 

 1#22� 1#22�7�����E �V1#22�'P1P�V1#22� �
+� �+�w �  +x ��V1#22y}z, (Eq. 25) 

 .)/" � .)/"�7�����E �V.)/"� 'P1P�V.)/" � �
+� �+�w �  +x ��V.)/"y~z� (Eq. 26) 

 %&' � %&'�7�����E �V%&'�'P1P�V%&' � �
+� �+� w �  +x ��V%&'y~z	 (Eq. 27) 
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Table 13: Average efficiency of the method, using manually moved ExtOri parameters. 

Shift dX=dY=dZ [m] 
 +1 +2 +3 +4 +5 

Efficiency 1.00 1.00 0.92 0.65 0.16 
Shift droll=dpitch=dyaw[‘] 

 +10 +20 +30 +40 +50 
Efficiency 1.00 1.00 0.97 0.93 0.61 
�

For instance, droll = dpitch = dyaw = 30’ and dX = dY = dZ = 3 m results in 1.0 efficiency. 

Efficiency does not depend only on the accuracy of the ExtOri parameters, as well as on the 

quality of extraction, and relative position of building in an image.  

 

The matching algorithm is very sensitive to angular changes. The coarse ExtOri parameters 

should be known with high accuracy, better than 4 m in position and 0.5º in orientation. With 

DGPS measurements better than 4 m accuracy of position is expected. However, the problem 

remains with roll, pitch and yaw angles.  

 

Secondly, the efficiency of the algorithm was checked on corrected coordinates as the initial 

values for the ExtOri parameters. The corrected ExtOri parameters are very close to the real 

value; therefore, the efficiency of the algorithm must be checked more closely. The 

correctness of the point extraction is 74%, but the position accuracy, i.e. the localisation 

accuracy of extracted feature is a more complex value to estimate. The precision of the used 

features is pixel precise. Due to oblique view of the camera, the pixel in upper part of the 

image does not cover the same area as the pixel in the lower part of same image. The problem 

of the position accuracy of the extracted features remains although the correctness of 

matching is over 90%. An adjustment of the ExtOri parameters cannot result in higher 

accuracy of the ExtOri parameters as the accuracy of extracted features is.  

 

Position inaccuracy in the feature detection results in a smaller rotation and/or translation of 

the projected sub model with the adjusted ExtOri parameters in comparison to the projection 
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with initial corrected ExtOri parameters. Therefore, the efficiency of the algorithm using 

corrected ExtOri parameters was checked using three values: 

- »better«, algorithm is efficient, 

- »minor change«, re-projected sub model with adjusted ExtOri parameters appears to 

be a bit rotated or moved according to the initial position of the projected sub model 

and image data and 

- »worse«, sub model projected with the initial ExtOri parameters is in a better position 

as with the adjusted ExtOri parameters, larger rotation and/or translation is present 

according to the initial projection of the sub model and image data. 

 

Table 14: Average efficiency of the method, using corrected ExtOri parameters. 

Shift Efficiency 
Non 

corrected ExtOri 
parameters 

Better 0.64 
Minor change 0.22 

Worse 0.14 
 Sum: 1.00 

 

Using very accurate coarse ExtOri parameters, the efficiency is 64%, which is lower than 

having less accurate initial ExtOri parameters. 22% of the adjusted ExtOri parameters have 

minor changes, and they could still be used for an automatic texturing of a 3D building with 

images acquired in the IR domain, whereas in 14% the algorithm is inefficient.  

4.6.2  Completeness and correctness of extracted features 

Evaluating the extraction is given with two quality parameters, completeness and correctness 

of extracted intersection points. The extraction of the intersection points was evaluated. 

However, the Förstner point extraction was not evaluated, since it has shown less promising 

results (see section 4.4). 

 

Completeness and correctness of the extraction are calculated 

 "#8.2P/P*P$$�#<�P=/1&"/)#* � opq @R���r�����R�����R������RQ����7�uopq @R���r�q �QR�����7�u  (Eq. 28) 
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and 

 "#1P"/*P$$�#<�P=/1&"/)#* � opq @R���r�����R�����R������RQ����7�uopq @R���r�����R������RQ����7�u , (Eq. 29) 

where: 

Number of model points is eight when the sub model building 1 in inspected. Only the 

roof points are taken into calculations.  

 

 

Figure 40: Correctness and completeness of intersection point (red cross) extraction presented 
on cut-out of image number 13229, stripe #4. 

 

Number of correctly extracted points: 6 (green tick) 

Number of all extracted points:  10 (red cross) 

Number of wrong extracted points: 4 

Completeness of extraction:  6/8 = 0.75 

Correctness of extraction:   6/10 = 0.60 

Green and yellow lines are extracted straight edges. 

 

The reason for faulty extracted points in Figure 40 is a double response of an edge (dark and 

light blue arrow), detection of the ground line of the building (violet arrow) and the ground 

structure (yellow arrow). Double response of an edge should be avoided using the different 

parameters of the extraction, which is not always possible when processing a larger amount of 

images with same parameters of extraction.  
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The average completeness and correctness (Eq. 28 and 29) of the intersection point extraction 

for 95 images for parameters of the extraction in Appendix B are presented in the Table 15.  

 

Table 15: Average completeness and correctness of extraction of intersection points. (Sample 
of 95 images, see Appendix B for extraction parameters). 

Extraction 
Completeness Correctness 

0.88 0.74 

4.6.3 Completeness and correctness of matching algorithm 

The evaluation of the matching algorithm is made analogously to the evaluation of the feature 

extraction and on the same dataset (extracted intersection points with the extraction 

parameters shown in Appendix B).  

 

The completeness and correctness of the matching algorithm are calculated 

 "#8.2P/P*P$$�#<�8&/")*O � opq @R��r�����R�����q ����RQ����7�uopq @R���r�q �QR�����7�u  (Eq. 30) 

and 

 "#1P"/*P$$�#<�8&/")*O � opq @R��r�����R�����q ����RQ����7�uopq @R���r�����q ����7t����7�u . (Eq. 31) 

 

The correctness and completeness were checked for the matching algorithm when the 

corrected ExtOri parameters were used as initial values and with the manually moved ExtOri 

parameters. The matching and adjustment was made for each image in three iterations. 

 

Manually moved ExtOri parameters 

 Vv � V{ � V| � ����8, (Eq. 32) 

 �V1#22� V.)/" � V%&' � ��+}. (Eq. 33) 

 

The corrected coordinates are very close to the real value, so one iteration is sufficient. 

However, it was calculated in three iterations to check the convergence of the algorithm. 
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Figure 41: Correctness and completeness of matching algorithm presented on cut-out of 
image number 13229, stripe #4. 

 

Number of all extracted points:  10 (red cross) 

Number of correctly matched points: 6 (green tick) 

Number of all matching points: 9 (red dashed lines between red cross and model points) 

Number of model points is:  8 

Number of points with no matching found: 1 (encircled with red) 

Completeness of matching:  6/8 = 0.75 

Correctness of matching:   6/9 = 0.67 

In dark blue is the roof surface 1, in light blue are other surfaces of the sub model building 1.  

 

For extracted points marked with arrows, wrong correspondence was found. The point 

marked with blue arrow is a result of double edge response, and therefore will not 

significantly influence the adjustment of the ExtOri parameters. That point is counted as an 

incorrect match, but is inaccurately detected, i.e. worse localisation. The point marked with 

red and yellow is a result of an incorrect extraction and found correspondence is severely 

influencing the adjustment. The encircled point is also a result of a wrong extraction, but it is 

correctly not matched to any model points.  
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The average completeness and correctness (Eq. 30 and 31) of the matching algorithm are 

presented in the Table 16; they are calculated for 95 images; for corrected and manually 

moved ExtOri parameters in three iterations. 

 

Table 16: Average completeness and correctness of matching algorithm. (Sample of 95 
images, three iterations, corrected and manually moved ExtOri parameters.) 

Initial 
coordinates 

Matching 
Completeness Correctness 

iteration 1 2 3 1 2 3 
Corrected 0.75 0.75 0.75 0.90 0.90 0.90 

Moved 0.73 0.74 0.74 0.87 0.87 0.90 
�

The quality of the matching algorithm, presented with the correctness and completeness is 

high. No obvious change in correctness and completeness of the matching algorithm is seen in 

the iteration of a process when corrected coarse ExtOri parameters are used, because the 

corrected coarse ExtOri parameters are very close the correct value. However, using manually 

moved ExtOri parameters, iteration of the matching algorithm increases the values of the 

completeness and correctness of the matching algorithm (see also Figure 30). 
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4.7 Discussion 

The tests of the developed method showed that the adjustment of the ExtOri parameters using 

the correspondence between the extracted Förstner »junction points« and the projected 3D 

building model does not improve them. This is a consequence of the Förstner point detector; 

many points extracted by this operator do not present roof edges, but some other smaller 

objects. Additionally, the number of extracted Förstner points is very high, but only few 

correspond to the model. On the contrarily extraction of intersection points gives more 

promising results when the inspected building is in the centre or lower part of an image. 

Although the number of extracted intersection points is much smaller compared to the 

extracted Förstner points, relatively high number of intersection points are co-registered with 

the projected model.  

 

Due to the oblique view of the camera some ground objects appear to be close to the roof 

edges. This causes mismatching, especially in case of extracted Förstner points. A reason for 

that are abovementioned small objects detected by the Förstner operator; the procedure of 

intersection point extraction is less sensitive to detect small, spot-like objects. Oblique view 

of the acquisition also influences the appearance of the projected 3D building model. The 

model is not only occluded by other objects, but is also self-occluding. Apparent intersection 

points, caused by self-occluding of the model in projection were not calculated in the tests, 

which worsens the efficiency of the method.  

 

What is more, the ground sample resolution in the lower part of the image is higher in 

comparison to the upper part of the image, what is the consequence of the geometry of the 

acquisition. The inspected building should lie in the bottom centre or centre part of an image. 

However, a building lying in the upper part of an image is relative small, and preferably, the 

textures should be acquired from another frame of a video sequence. If the discussing building 

is in the upper part of an image, the matching algorithm showed no improvement of the 

ExtOri parameters. The importance of the relative position of a sub model in the image can 

suggest that the distortions obtained in the system calibration are not accurate and the method 

is not robust against this inaccuracy. The lenses distortions of the camera can be clearly seen 

in the used IR images on all the image margins.  
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Used 3D building model has several inaccuracies and is in some cases unsuitable or even 

wrong modelled. For better estimation of the efficiency of the matching algorithm, the method 

should be applied on another building model. 

 

The tests were made using projection of the whole model and sub models on the sample 

dataset. The projected model was manually moved before the matching algorithm was applied 

in order to evaluate the matching algorithm. Thus, the coarse ExtOri parameters should be 

known with high accuracy, better than 4 m in position and 0.5º in orientation. With DGPS 

measurements better than 4 m accuracy of position is expected (Grewal, 2007). However, the 

problem remains with measurements of roll, pitch and yaw angles.  

 

The presented method is applicable for a refinement of the position and orientation obtained 

in the extended system calibration of the whole sequence under the condition that the 

inspected building does not lie on the very edges of the image. It can improve the texture 

mapping for a single building or building part caused by not modelled vibrations of the 

system addressed by Kolecki et al. (2010) or small inaccuracies in the model. However, on 

the given dataset the method does not improve the ExtOri significantly when applied on a 

whole model.�
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5 CONCLUSION AND FUTURE WORK 

In this thesis the correction of the exterior orientation (ExtOri) parameters of the IR camera 

mounted on a mobile platform is studied: The main purpose of the research is to automatically 

extract IR textures for roofs and facades of the existing building model. The developed 

method bases on a point-to-point matching of the features extracted from IR images with a 

wire frame building model.  

 

Firstly, different feature types were studied; Förstner points and intersection points are chosen 

as the suitable feature type for given task and compared. Secondly, extracted features and 

projected 3D building models are registered and the ExtOri parameters are re-calculated; 

matching of the features is applied iteratively. The 3D building model is modified before 

projection into a 2D image. The developed methodology was tested on the selected frames of 

the IR video sequence using the whole building model and two sub models.  

 

Initial tests have shown promising results applying the methodology on IR images and the 

dataset of the sub model. The developed method for matching and extraction is evaluated on a 

sub model using five different quality parameters, i.e. efficiency of the method, completeness 

and correctness of extraction and matching. Efficiency of the method is estimated to over 90% 

for initial ExtOri parameters with accuracy of position 4 m and angular values 0.5° or better. 

The quality parameters for extracted intersection points are estimated to 88% and 75% for 

completeness and correctness of extraction of intersection points. The completeness of 

matching is estimated to over 73% and the correctness of the iterative matching is over 90%. 

However, the method is not applicable on the whole building model, so possible reasons for 

that are: localisation accuracy of the extracted features, resolution of the IR images, 

characteristics of the IR spectrum, lens distortions, accuracy of coarse ExtOri and influence of 

oblique view of image acquisition. The experiment also indicated some disadvantages of the 

input data, especially the 3D building model, and of the method. The procedures developed in 
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the frame of the thesis produce accurate results and are comparable to other studies. Several 

possibilities for future work and enhancement of the method are proposed in next paragraphs. 

 

During the research many questions and ideas for different approaches or to enhance the 

developed method have appeared. Some of the ideas are addressed and presented in the 

experiment and also in this chapter. The discussed topic of the thesis is up-to-date with a 

vision to the fully-automated approach of texture mapping building models also with lower 

resolution images.  

 

Extraction of intersection points from straight edge segments can be enhanced by using 

rectangular or ellipse search space for the line intersection instead of the circular search space. 

By changing the search space in this way, the direction and length of line are weighted. 

Furthermore, the intersection points extracted from long lines can be applied with the higher 

weight in weight matrix in the LS adjustment.  

 

The matching algorithm can be divided in more steps, firstly using detected features in lower 

resolution images and secondly in iteration(s) in higher resolution of the same image. For this 

stepwise procedure, firstly a different approach for matching could be used, e.g. correlation 

methods. Although the correlation methods have great computational costs, they might still be 

efficient in lower resolution images due to a smaller amount of extracted features in the 

images. The processing of low resolution images could then provide coarse ExtOri parameters 

for the next iterations, so the less accurate initial GPS/INS should be sufficient.  

 

The connection between subsequent frames could also provide better coarse ExtOri 

parameters. The coarse ExtOri parameters should be estimated for the first frame of the 

sequence and for the following ones, utilisation of the GPS/INS data could be sufficient. The 

connection between frames can be made for example by weight points of extracted regions. 

What is more, the registration of the extracted features between subsequent frames could 

provide the re-estimation of IntOri parameters. 

 

Utilizing the dynamic search space for correspondence is one way to deal with some of the 

outliers and reducing the computational cost of the matching used in the method proposed in 
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this thesis. LS adjustment is sensitive to the outliers; the systematic influences on the 

measurements and outliers should be excluded from the data before the LS adjustment is 

applied. However, these conditions are difficult to fulfil in the automatic feature extraction 

and matching. On the other hand, »RANSAC is capable of interpreting smoothing data 

containing a significant percentage of gross errors, and is thus ideally suited for applications 

in automated image analysis where interpretation is based on the data provided by error-prone 

feature detectors« (Fischer, 1981). For this reason RANSAC is probably more suitable than 

LS adjustment in the presented case.  
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6 RAZŠIRJEN POVZETEK V SLOVENŠ�INI 

P.1   UVOD 

 

P.1.1   Motivacija 

V zadnjih desetletjih naraš�a svetovna poraba energije, izvzemši preteklo leto. (Statistical 

Review of World Energy 2009, 2010). V državah Evropske unije (EU) zgradbe porabijo 40 % 

energije in povzro�ijo 36 % emisij CO2 (Directive 2010/31/EU, 2010). Izboljšanje energetske 

u�inkovitosti zgradb je nujno potrebno za zmanjšanje porabe energije in toplogrednih plinov.  

Številni obstoje�i 3D modeli mest vsebujejo podatke o lastnostih stavb, ki jih lahko 

dopolnimo z analizami posnetkov zajetih z mobilnih platform. Za lažjo interpretacijo vsebine 

posnetkov si lahko pomagamo z obstoje�imi 3D modeli (Stilla, 2000) in dele posnetkov 

uporabimo za teksturiranje modela. Posnetki zajeti iz zraka ali vesolja z navpi�nim kotom 

gledanja so primerni za podatke o strehah, medtem kot so terestri�ni posnetki primerni za 

podatke o fasadah zgradb. Vendar lahko z aeroposnetki ustvarjenimi s kamerami usmerjenimi 

poševno glede na nadir, to so tako imenovani poševni posnetki (oblique photography), 

pridobimo podatke tako za strehe kot fasade stavb (Frueh, 2004 in Stilla, 2009). Nekateri 

pojavi in/ali strukture so vidni tako v VIS kot IR spektru, medtem ko so drugi, na primer 

sistemi za centralno ogrevanje, toplotni mostovi vidni le v posnetkih zajetih v IR delu spektra. 

Mestne toplotne otoke lahko opazujemo v IR spektru v ve�jih merilih, termalne lastnosti stavb 

pa zahtevajo zajem v ve�jih merilih� (Weng, 2009, Kajfež-Bogataj, 2005). Teksturiranje 

obstoje�ega 3D modela stavb z IR posnetki pove�uje informacijsko vrednost baze podatkov in 

omogo�a analize termalnih izgub stavb. 

P.1.2   Sorodna dela 

Predpogoji za natan�no teksturiranje 3D modelov stavb so: kalibrirana kamera z znanimi 

parametri notranje orientacije (NO), georeferenciran model stavb in znani parametri zunanje 

orientacije (ZO), to je položaj kamere v trenutku zajema (Stilla, 2009). Na platformah, ki 
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zajemajo posnetke iz zraka, so pogosto poleg kamer tudi naprave za zajem trajektorije leta, in 

sicer najpogosteje sistem za globalno dolo�anje položaja (Global Positioning System, GPS) in 

inercialna merilna enota (Inertial Measurement Unit, IMU). GPS in IMU merita podatke za 

dolo�itev približnih parametrov ZO. Poleg prej omenjenih predpogojev za natan�no 

teksturiranje modela stavb mora biti znan ali s kalibracijo dolo�en relativen položaj vseh 

merilnih naprav na platformi. Vsi ti parametri morajo biti upoštevani pri projekciji 3D modela 

stavbe v posnetek za dolo�itev podmatrike digitalne slike za teksturo, ki ustreza izbrani 

ploskvi stavbe. Parametri ZO pridobljeni z GPS/IMU pogosto ne dosegajo natan�nosti, 

zahtevane za visokokvalitetno teksturiranje. Številni avtorji v raziskavah za samodejno 

(avtomatsko) povezavo 3D modela s slikami uporabljajo metode digitalne obdelave podob 

(slik).  

 

Hsu et al. (2000) projicirajo 3D daljice modela v posnetek in so�asno zaznajo linijske grafi�ne 

gradnike, ter dolo�ijo položaj kamere v �asu zajema. Grafi�ne gradnike najprej zaznajo in jim 

sledijo skozi zaporedne posnetke videosekvence, nato pa te grafi�ne gradnike uporabijo za 

dolo�itev približnih parametrov ZO med posameznimi posnetki. Daljice projicirajo s 

približnimi parametri ZO v posnetke. Položaj kamere ponovno prera�unajo na podlagi 

ujemanja projiciranih daljic in usmerjenih gradientov energijskih piramid posnetka (oriented 

image gradient energy pyramids). Frueh et al. (2004) prav tako uporabljajo zaznane daljice za 

dolo�itev položaja kamere. Na visokolo�ljivih poševnih posnetkih v VIS spektru zaznajo 

robove s Cannyjevim detektorjem. Zaznane robove nato razdelijo v daljice z rekurzivnim 

algoritmom delitve kon�nih to�k (recursive endpoint subdivision algorithm). Položaj kamere 

dolo�ijo z registracijo projekcije modela stavb v posnetek z zaznanimi daljicami in ga ocenijo 

z vrednostjo korelacije, ki temelji na ujemanju »linije na linijo« (line-to-line matching). Tian 

et al. (2008) predlagajo ujemanje robov skozi videoposnetke z uporabo geometrijskih vezi 

dolo�enih na podlagi zanesljivih to�k. Zanesljive to�ke dolo�ijo z analizo koncev zaznanih 

robov, ki jih kvalitativno ocenijo. Z uporabo zanesljivih to�k bistveno zmanjšajo prostor 

iskanja za ujemanje to�k in s tem tudi zmanjšajo �as izra�una. 

 

Možen pristop za dolo�itev položaja kamere je uporaba enega ali ve� bežiš�. Lee et al. (2002) 

uporabljajo dve ali tri bežiš�a in ujemanje 3D in 2D (dvorazsežnih) daljic za dolo�itev 

parametrov ZO terestri�ne kamere. Ding et al. (2008) predlagajo dvostopenjski proces za 
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dolo�itev položaja kamere. V prvem koraku dolo�ijo približne parametre ZO z uporabo bežiš� 

in podatkov pridobljenih iz GPS/INS. V drugem koraku izboljšajo natan�nost približnih 

parametrov ZO dolo�enih v prvem koraku z ujemanjem pravokotnih vogalov zaznanih s 

poševnih posnetkov in modela stavb pridobljenega z lidarjem (LIDAR, Light detection and 

ranging). 

 

Hoegner in Stilla (2008) uporabita IR videoposnetke zajete z mobilne terestri�ne platforme za 

samodejno teksturiranje 3D modelov stavb. Stilla et al. (2009) in Kolecki et al. (2010) 

opisujejo neposredno georeferenciranje s podatki GPS/INS in razširjeno kalibracijo merilnega 

sistema. Poudarijo problem vibrirajo�e platforme, na primer helikopterja, ki lahko povzro�i 

neskladje projiciranega modela z njegovo podobo na posnetku.  

P.1.3   Opis problema in cilj raziskave 

�e natan�nost meritev GPS/INS ne zadostuje za dolo�itev parametrov zunanje orientacije 

(ZO) mobilne platforme s potrebno natan�nostjo, lahko vplive na meritve GPS/INS 

modeliramo in jih tako popravimo. Obraten pristop k rešitvi tega problema je uporaba vsebine 

posnetka za izboljšanje natan�nosti parametrov ZO. V tej diplomski nalogi z metodami 

obdelave podob zaznamo grafi�ne gradnike na IR posnetkih videosekvence in jih povežemo s 

3D modelom stavb. Glavni namen naše raziskave je samodejna dolo�itev tekstur za strehe in 

fasade stavb iz IR posnetkov za teksturiranje obstoje�ega 3D modela stavb. Razvijemo 

metodologijo za izboljšanje dolo�itve parametrov ZO z metodo ujemanja »to�ke na to�ko« 

(point-to-point). 

 

Hipotezi naloge sta: 

� Ko-registracija zaznanih grafi�nih gradnikov z IR videoposnetkov in 3D modela stavb 

izboljša parametre ZO tako, da se model stavb bolje prilega stavbam na posnetku. 

� meritve GPS/INS in kalibracija celotnega sistema zagotavljajo dovolj natan�ne 

približne parametre ZO za prvo (izhodiš�no) projekcijo 3D modela v posnetek.  
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P.2   METODOLOGIJA 

 

P.2.1   Pregled grafi�nih gradnikov zaznanih z infrarde�ih posnetkov 

Na testnem IR videoposnetku zaznamo razli�ne vrste grafi�nih gradnikov, kot na primer 

to�ke, linije, daljice. Uporabimo razli�ne standardne operatorje za zaznavo grafi�nih 

detektorjev: Förstnerjev operator, Cannyjev detektor robov in druge. Namen raziskave 

zaznave grafi�nih gradnikov je izbira tistih, ki ustrezno predstavljajo robove stavb in 

omogo�ajo samodejno ujemanje s 3D modeli stavb. Izbira ustreznih grafi�nih gradnikov in 

parametrov za njihovo zaznavo zahteva podrobno obravnavo, ki jo izvedemo in predstavimo v 

tem diplomskem delu. Posnetki v IR spektru imajo nižjo lo�ljivost in druga�ne lastnosti od 

posnetkov v VIS spektru, kar vzamemo v obzir pri izbiri grafi�nih gradnikov. 

 

Zgradbe so najpogosteje pravokotnih oblik, z ravnimi slemeni in drugimi sestavnimi deli kot 

so na primer: dimniki, fr�ade in okna, zato jih je mogo�e opisati z enostavnimi geometrijskimi 

oblikami. Pri obravnavi 3D modela stavb s stopnjo podrobnosti LOD2 so stavbe predstavljene 

dovolj dobro z daljicami namesto z bolj kompleksnimi gradniki kot so krivulje ali loki.  

P.2.2   Razvita metodologija 

Na sliki P.1 je shematsko prikazana razvita metodologija. Na podlagi podatkov GPS/INS in 

razširjene kalibracije sistema projiciramo v vsak posnetek IR videosekvence prilagojen 3D 

model stavb s približnimi parametri ZO. Na IR posnetkih samodejno zaznamo grafi�ne 

gradnike in nato iš�emo ujemanje med projiciranim 3D modelom in zaznanimi grafi�nimi 

gradniki. Na podlagi koregistriranih to�k izravnamo po metodi najmanjših kvadratov 

parametre ZO snemalne naprave za trenutek zajema posnetka. Z izravnanimi parametri ZO 

3D model ponovno projiciramo v isti posnetek. Ujemanje projiciranega modela in zaznanih 

grafi�nih gradnikov iš�emo iterativno. Cilj uporabe metodologije na IR posnetkih je, da se 

projiciran model zgradbe bolje prilega zgradbi na posnetku, takrat je metoda uspešna.  
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Slika P. 1: Shematski prikaz razvite metodologije. Z rde�o so obarvani vhodni podatki. 

 

Izbira vrste grafi�nih gradnikov in metode za njihovo zaznavo z IR posnetkov. Za ujemanje 

daljic in projiciranih poligonov 3D modela stavb na posnetek je potrebna korelacijska 

funkcija. �asovna potratnost izra�una ujemanja »linije na linijo« je visoka (Frueh, 2004) in 

zaznane daljice (linije) se pogosto ne za�nejo in kon�ajo v vogalih zgradb. Neenojen odziv 

zaznanih robov (non single edge response) lahko otežko�a postopek ujemanja. V primerjavi z 

ujemanjem »linije na linijo« je ujemanje »to�ke na to�ko« izrazito manj �asovno potratno za 
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izra�un. Zato se omejimo na to�ke, kot primerno vrsto grafi�nih gradnikov, izberemo dva 

algoritma za njihovo zaznavo in uporabimo program Halcon MVTec6 za zaznavo grafi�nih 

gradnikov. Uporabljena sta Förstnerjev algoritem in algoritem za dolo�itev prese�iš�nih to�k, 

izra�unanih iz zaznanih daljic s posnetka (slika P.2). Förstnerjev operator zazna na posnetku 

zna�ilne to�ke, ki se razlikujejo od okolice. Obstajata dve vrsti Förstnerjevih to�k, in sicer 

tako imenovane »sti�ne to�ke«, ki se pojavijo na prese�iš�ih robov na posnetku in »to�ke 

ploskve«, ki ozna�ujejo spremembo barve ali svetlosti glede na okolico. »Sti�ne Förstnerjeve 

to�ke« uporabimo pri iskanju ujemanja med to�kami in projiciranim modelom, saj »to�ke 

ploskev« ne zastopajo zna�ilnih to�k objektov, ki bi jih lahko povezali z modelom stavb.  
 

 

Slika P. 2: Zaznani grafi�ni gradniki. »Sti�ne Förstenrjeve to�ke« so ozna�ene z rde�imi 
križci, , središ�a rumenih krogov prestavljajo prese�iš�ne to�ke dolo�ene na podlagi zaznanih 
ravnih robov, ki so predstavljeni z oranžnimi daljicami. 

  

Prese�iš�ne to�ke dolo�ene iz daljic izra�unamo z vmesnim korakom zaznave ravnih robov 

(slika P.3). Izra�unamo razdaljo d med kon�nimi to�kami vseh zaznanih ravnih robov (daljic). 

Postavimo mejo, ki dolo�a najve�jo dovoljeno oddaljenost med kon�nimi to�kami dmax v 
���������������������������������������� ��������������

�

6 Halcon je komercialna programska oprema za aplikacije ra�unalniškega vida, ki ga razvija MVTec. (Halcon, 2010). 
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pikslih. Povedano druga�e, okoli vsake kon�ne to�ke daljice ustvarimo okroglo obmo�je 

iskanja s premerom dmax. Za vse pare kon�nih to�k daljic, ki izpolnjujejo pogoj d � dmax 

izra�unamo prese�iš�ni kot � pripadajo�ih daljic. Prese�iš�ni kot mora biti med vrednostmi 

�min in �max = � - �min, kjer je � � [0, �]. Ti meji dolo�imo, ker je prese�iš�ni kot med bližnjimi 

zgradbami redko zelo oster ali zelo top. Skoraj vzporednim daljicam (linijam), ki ležijo blizu 

skupaj se izogibamo, saj so najverjetneje rezultat neenojnega odziva detektorja robov, to je 

»slabe« zaznave robu ali pa ne dovolj natan�ne zaznave dveh vzporednih robov. Za vse pare 

to�k, ki zadostijo pogojema: d � dmax in �min � � � �max izra�unamo prese�iš�ne to�ke. Z 

dolo�itvijo obeh mej, kotne in dolžinske, algoritem za dolo�itev prese�iš�nih to�k omeji 

dolo�itev manj zanesljivih to�k.  

 

Prilagoditev 3D modela stavb. 3D modeli stavb se med seboj razlikujejo po vsebini, na�inu 

shranjenih podatkov o 3D modelu in drugem. Zaradi tega je potrebno 3D model prilagoditi, 

preden ga uporabimo in z njim preizkusimo razvito metodologijo. S prilagajanjem ne 

posegamo v geometrijo modela in njegovo natan�nost. 

 

 

Slika P. 3: Ži�ni prikaz 3D modela stavb (LOD2); 3D model stavb je prilagojen, strehe, ki jih 
obravnavamo v raziskavi, so rde�e, ostali deli stavb modri.  
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Iz modela najprej odstranimo zakrite robove in ploskve, torej tiste ploskve in dele ploskev, ki 

so nevidne glede na položaj glediš�a in smer gledanja kamere. Posnetki v IR spektru imajo 

majhne razlike (radiometri�nih) vrednosti med nizkimi deli fasad, blizu tlom in plo�nikom. 

Nato iz nadaljnje obravnave izlo�imo vse tiste to�ke 3D modela, ki ne pripadajo streham 

stavb (slika P.3). 

 

Ujemanje grafi�nih gradnikov z modelom. Vzpostavimo povezavo med to�kami modela in 

zaznanimi to�kami z IR posnetka na podlagi njihove medsebojne lege ter uporabimo ujemanje  

»to�ka na to�ko«. Za vsako to�ko modela dolo�imo krožno obmo�je iskanja z radiem R v 

pikslih, v katerem iš�emo zaznate to�ke IR posnetka. Nastopijo razli�ni primeri povezav to�k 

modela in zaznanih to�k. �e zaznana to�ka leži v obmo�ju iskanja jo povežemo z modelno 

to�ko, to�ki se ujemata (dolo�imo ju za homologni to�ki). �e nobena zaznana to�ka ne leži v 

obmo�ju iskanja modelna to�ka nima povezave. V primeru, da ve� to�k leži v obmo�ju 

iskanja modelne to�ke vse povežemo z njo. �e ena zaznana to�ka leži v ve� obmo�jih iskanja 

modelnih to�k je povezana le z najbližjo modelno to�ko. 

 

Izravnava orientacijskih parametrov po metodi najmanjših kvadratov. Ko-registrirane 

oziroma ujemajo�e  to�ke izravnamo po metodi najmanjših kvadratov. Vhodni podatki 

izravnave po MNK so opazovanja, to so slikovne koordinate zaznanih to�k, ki se ujemajo s 

to�kami projiciranega 3D modela, 3D modelne koordinate ujemajo�ih to�k v globalnem 

koordinatnem sistemu in približni orientacijski parametri. Parametri NO so konstante v 

izravnavi, parametri ZO so neznanke. 

 

Ponovna projekcija 3D modela stavb. Z izravnanimi orientacijskimi parametri model 

ponovno projiciramo v posnetek z isto funkcijo (matemati�nim predpisom), ki smo ga 

uporabili za prvo projekcijo modela.  

 

Ponavljanje (iteracije) algoritma. Iterativno uporabimo metodo ujemanja zaznanih in 

projiciranih to�k 3D modela. Radij R obmo�ja iskanja ujemanja grafi�nega gradnika s to�ko 

projiciranega 3D modela stavb lahko dolo�imo kot konstanto ali pa kot spremenljivo vrednost 

za vsako iteracijo ujemanja.  
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P.3   UPORABA METODOLOGIJE 

 

P.3.1   Opis podatkov 

Infrarde� videoposnetek in geometrija zajema podatkov. IR posnetki so zajeti na urbanem 

obmo�ju z visokoresolucijsko IR kamero AIM 640 QLW FLIR, ki zajema s frekvenco 25 

posnetkov na sekundo. IR kamera je vgrajena na platformi na helikopterju. Višina leta je 

približno 400 m nad površjem. Kamera je usmerjena naprej v smeri leta (oblique forward  

looking) s kotom opazovanja 45° glede na nadir (pitch kot). Lo�ljivost posnetkov je 

640�× 512 pikslov. Helikopter je štirikrat letel preko testnega obmo�ja, to je obmo�ja 

glavnega kampusa TUM. Z videoposnetka so izrezani štirje snemalni pasovi, vsak s približno 

125 posnetki. 

 

GPS/INS meritve. Na helikopterju je GPS/INS Applanix POS AV 510 enota, ki meri: položaj, 

GPS �as za trenutek zajema posameznega posnetka, višino, smer in trenutno hitrost leta 

(približno 160 km/h). GPS antena je pri pilotski kabini in zajema položaj s frekvenco 1 Hz 

(epoha). Popravki za diferencialni GPS (Differential GPS, DGPS) niso bili dostopni za �as 

snemanja, kar povzro�a slabšo natan�nost meritev GPS/INS enote. V tej diplomi uporabljamo 

popravljene parametre ZO, izra�unane po postopku razširjene kalibracije merilnega sistema, 

ki ga predlagajo Kolecki et al. (2010). 

 

3D model stavb. 3D ži�ni model stavb s stopnjo podrobnosti LOD2 je izdelan s 

polavtomatsko metodo v programskem orodju INJECT7. Glavni kampus TUM je modeliran 

na podlagi stereoparov aeroposnetkov. Zaradi na�ina izdelave 3D modela in generalizacije so 

v modelu prisotne nekatere nepravilnosti in nenatan�nosti. Položajna natan�nost modela,  

ocenjena na testnih zgradbah modela, je ocenjena na 1 m. (Frey, 2006). 

���������������������������������������� ��������������

�

/
�INJECT je programsko orodje za polavtomatsko ekstrakcijo 3D objektov iz digitalnih aeroposnetkov. Namenjeno je 

predvsem zajemu stavb, omogo�a pa tudi zajem vegetacije, cest in vodnih površin. Za ekstrakcijo 3D objekta je potrebno 

prekrivanje ve� aeroposnetkov (lahko tudi satelitskih), znani morajo biti parametri ZO in NO, ter podatki o višinah (DMR).  

�
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P.3.2   Preizkus razvite metodologije s podatki 

Metodo preizkusimo na testnih podatkih, in sicer na dvanajstih izbranih posnetkih v katere 

projiciramo celoten model in dva podmodela. Iz vsakega snemalnega pasu (#1-#4) izberemo 

tri posnetke: iz za�etka, sredine in konca vsakega pasu. Nato projiciramo podmodel na 95 

izbranih zaporednih posnetkov videosekvence in razvito metodologijo kakovostno 

ovrednotimo ter uporabimo Forstnerjev algoritem in algoritem za dolo�itev prese�iš�nih to�k. 

Zaznane ravne robove klasificiramo glede na dolžino in šele nato iz njih dolo�imo prese�iš�ne 

to�ke (slika P.4). �

 

 

Slika P. 4: Zaznane ravne robove klasificiramo in iz njih dolo�imo prese�iš�ne to�ke (rde�i 
križci). Rde�e daljice so kratki, manj zanesljivi robovi (8-12 pikslov); oranžni so robovi 
srednjih dolžin (12-32 pikslov); in zeleni so najdaljši robovi (ve� kot 32 pikslov).  

dmax = 12 pikslov. 
 

Število zaznanih Förstnerjevih to�k z izbranih posnetkov je veliko, vendar relativno malo teh 

to�k leži na vogalih zgradb, zato se tudi malo to�k ujema s projiciranim modelom. V 

primerjavi s številom zaznanih Förstnerjevih to�k je število prese�iš�nih to�k majhno, vendar 

se jih relativno veliko pravilno ujema z modelom (slika P.2). Majhni objekti na strehah, na 
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primer: dimniki in fr�ade, so v 3D modelu stavb prikazani s kratkimi daljicami ali 

poligonskimi stranicami. Pri povezavi teh majhnih objektov z zaznanimi to�kami pogosto 

prihaja do napa�nega ujemanja. Napa�no ujemanje z vogali majhnih objektov na strehah je 

bistveno zmanjšano, �e so zaznane to�ke prese�iš�ne to�ke izra�unane na podlagi dolgih 

robov. Da zmanjšamo verjetnost napa�nega ujemanja modela in prese�iš�nih to�k je potrebno 

mejno vrednost za najmanjšo dovoljeno dolžino zaznanega ravnega robu skrbno izbrati (dmax).  

P.3.3   Rezultati 

V tem podpoglavju predstavljamo rezultate testa, ki je opravljen na dvanajst izbranih 

posnetkih. Najprej projiciramo v te posnetke oba podmodela, zgradba 1 in zgradba 2, ter nato 

še celoten model. Podmodela in celoten model projiciramo v posnetke s parametri ZO 

popravljenimi po postopku opisanem v Kolecki et. al (2010), ki jih v nadaljevanju imenujemo 

popravljeni parametri ZO. Dodaten test naredimo na 95 zaporednih posnetkih �etrtega 

snemalnega pasu na katerih je v celoti vidna zgradba podmodela v katere projiciramo 

podmodel s to zgradbo. Nato projiciran podmodel ro�no premaknemo, torej uporabimo manj 

natan�ne parametre ZO za projekcijo 3D modela na posnetek in ponovno preizkusimo 

algoritem ujemanja. 

 

Podmodela. Uporaba metodologije na izbranih dvanajstih posnetkih in podmodelih, da 

nezadovoljiv rezultat, tako z uporabo zaznanih Förstnerjevih kot prese�iš�nih to�k. Relativen 

položaj projiciranega podmodela v posnetku vpliva na uspešnost metode in algoritma za 

ujemanje. Obravnavana zgradba ne sme biti prekrita (occluded) z okoliškimi objekti ali 

sencami in mora ležati v sredini posnetka glede na levi in desni rob posnetka, ter v obmo�ju 

od spodnjega roba do sredine. Vpliv distorzij le� kamere ima ve�ji vpliv na robovih posnetka. 

Zaradi poševnega kota gledanja kamere, torej zaradi geometrije zajema podatkov, ki smo jih 

uporabili, so objekti ob zgornjem robu bolj popa�eni in so na posnetku relativno manjši v 

primerjavi z objekti ob spodnjem robu. Ostale težave pri aplikaciji metode na dane podatke 

so: (pre)majhno število zaznanih to�k, ki se ujemajo z modelom, nepopolnosti in nepravilnosti 

pri zaznavi in ujemanju grafi�nih gradnikov. 
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Celoten model. Ko opazujemo kvaliteto, to je pravilnost in popolnost ujemanja celotnega 

projiciranega modela z zaznanimi to�kami v zaporednih posnetkih videosekvence zaklju�imo, 

da razvita metodologija ni u�inkovita za dane podatke. Menimo, da bi morali metodo 

preizkusiti na drugih podatkih, predvsem z druga�nim 3D modelom stavb, da bi lahko bolj 

objektivno ocenili njeno u�inkovitost.  

 

Zaporedni posnetki �etrtega snemalnega pasu (podmodel). Podmodel projiciramo v 95 

zaporednih posnetkov na katerih zaznamo prese�iš�ne to�ke (parametri zaznave so v prilogi 

B). Za za�etne parametre ZO uporabimo popravljene parametre ZO in premaknjene parametre 

ZO, ki so glede na popravljene premaknjeni za 3 m po položaju. Rezultat je visoka popolnost 

zaznave prese�iš�nih to�k in njihovega ujemanja z modelom. Zaklju�imo, da je na�in za 

izboljšanje parametrov ZO po predlagani metodologiji u�inkovit, �e obravnavamo eno stavbo, 

ki leži v sredini posnetka glede na levi in desni rob posnetka, ter v obmo�ju od spodnjega roba 

do sredine. Predpogoj za u�inkovitost metode je, da obravnavana stavba ni prekrita s 

sosednjimi objekti ali drugimi ovirami. Do podobnih zaklju�kov smo prišli pri preizkusu 

metode na dvanajstih izbranih posnetkih. 

P.3.4   Ovrednotenje metodologije 

Metodo, ki smo jo razvili smo ovrednotili na podlagi projekcije podmodela zgradba1 v 95 

posnetkov (s številkami 13141-13235) �etrtega pasu snemanja. Najprej ocenimo u�inkovitost 

metode, nato še popolnost in pravilnost algoritma za zaznavo in algoritma za ujemanje. 

Vrednotenje metode z dolo�itvijo teh petih parametrov kvalitete naredimo z vizualno analizo 

vsakega posnetka. 

U�inkovitost metode 

Metoda je u�inkovita, �e se ponovno projiciran model z izravnanimi parametri ZO bolje 

prilega položaju stavbe na posnetku od projekcije z za�etnimi vrednostmi parametrov ZO in je 

dana z izrazom: 

 U�)*�#5)/#$/�8P/#VP � ��Rs�������s��7����Rq ��7�R7����7�������7���q �QR��s��Rs������u7R���s . (Eq. P.1) 
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Tabela P. 1: Povpre�na u�inkovitost metode pri uporabljenih premaknjenih za�etnih 
vrednostih ZO. 

 dX = dY = dZ [m] 
Premik +1 +2 +3 +4 +5 

U�inkovitost 1.00 1.00 0.92 0.65 0.16 
 dnaklon = dnagib = dzasuk[‘] 

Premik +10 +20 +30 +40 +50 
U�inkovitost 1.00 1.00 0.97 0.93 0.61 
�

�e uporabimo za projekcijo za�etne parametre, ki so glede na vrednosti popravljenih 

parametrov premaknjeni za 3 m po položaju, ocenjujemo u�inkovitost metode na 92 %. 

U�inkovitost metode ni odvisna le od natan�nosti za�etnih vrednosti parametrov ZO, ampak 

tudi od kvalitete zaznave grafi�nih gradnikov in relativnega položaja stavbe na posnetku.  

 

V našem primeru je algoritem ujemanja zelo ob�utljiv na kotne spremembe (tabela P.1). Za 

za�etne vrednosti parametrov ZO morajo biti znane koordinate z natan�nostjo vsaj 4 m in vsaj 

0,5º za kote vrednosti. Z DGPS meritvami, ki pa niso bile dostopne v �asu zajema 

uporabljenega IR videoposnetka, je takšno položajno natan�nost mogo�e dose�i. Nerešen pa 

ostaja problem natan�nosti dolo�itve kotnih vrednosti, nagiba, naklona in zasuka. 

 

U�inkovitost metode preverimo tudi za popravljene vrednosti orientacijskih parametrov, kot 

za�etnih vrednosti za neznanke v izravnavi. Ker so popravljeni parametre ZO zelo blizu 

pravim vrednostim, za ta primer podrobneje obravnavamo u�inkovitost metode. Uvedemo tri 

kategorije za vrednotenje u�inkovitosti metodologije. Prileganje modela glede na položaj 

objekta na posnetku je lahko:  

- »Izboljšano«, algoritem je u�inkovit. 

- Z »majhno spremembo«, projekcija modela je malo premaknjena in/ali rotirana glede 

na prvo projekcijo modela in položaj objekta na posnetku. 

- »Slabše«, projekcija z za�etnimi parametri ZO je boljša. Ve�ja rotacija in/ali premik 

projiciranega modela z izravnanimi parametri ZO je opazna glede na prvo projekcijo 

modela in položaja objekta na posnetku.  
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Tabela P. 2: Povpre�na u�inkovitost metode pri uporabljenih popravljenih parametrih ZO za 
za�etne vrednosti v izravnani. 

Premik U�inkovitost 
Popravljeni 

parametri ZO 
Izboljšana 0,64 

Majhna sprememba 0,22 
Slabša 0,14 

 Kontrolna vsota: 1,00 
 

Za uporabljene popravljene parametre ZO ocenjujemo u�inkovitost metode na 64 %, kar je 

manj od u�inkovitosti metode pri uporabi manj natan�nih za�etnih vrednosti parametrov ZO 

(tabela P.2). 22 % izravnanih parametrov ZO je z majhnimi spremembami in jih še vedno 

lahko uporabimo za samodejno dolo�itev tekstur iz IR posnetka, medtem ko je za 14 % 

metoda neu�inkovita.  

Popolnost in pravilnost algoritma za zaznavo grafi�nih gradnikov 

Za oceno kvalitete algoritma za samodejno zaznavo grafi�nih gradnikov uporabimo dva 

pokazatelja, in sicer popolnost in pravilnost. Ocenjujemo kvaliteto zaznave prese�iš�nih to�k. 

Parametri zaznave prese�iš�nih to�k za obravnavani primer so dani v prilogi B. 

 

Popolnost in pravilnost algoritma za zaznavo to�k je kvocient med številom pravilno zaznanih 

to�k in številom modelnih to�k, oziroma številom pravilno zaznanih to�k in številom vseh 

zaznanih to�k. Povpre�na popolnost in pravilnost algoritma za zaznavo prese�iš�nih to�k za 

95 posnetkov je dana v tabeli P.3. 

 

Tabela P. 3: Povpre�na popolnost in pravilnost zaznave prese�iš�nih to�k (Vzorec 95 
posnetkov, za parametre dane v prilogi B). 

Zaznava 
Popolnost Pravilnost 

0.879 0.743 
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Popolnost in pravilnost algoritma za ujemanje 

Algoritem za ujemanje projiciranega modela in zaznanih to�k na IR posnetkih ovrednotimo 

analogno kot algoritem za zaznavo grafi�nih gradnikov. Uporabimo isti niz podatkov in  

algoritem za zaznavo prese�iš�nih to�k s parametri, danimi v prilogi B. Popolnost in 

pravilnost algoritma za ujemanje samodejno zaznanih to�k s posnetka in projiciranega 3D 

modela stavb je dana s kvocientom števila pravilno ujemajo�ih to�k in številom to�k modela, 

oz. številom pravilno ujemajo�ih to�k in številom vseh ujemajo�ih to�k.  

 

Parametra kvalitete algoritma za ujemanje ocenimo za projekcijo podmodela zgradba 1 v 

posnetke s popravljenimi in premaknjenimi parametri ZO. Metodologijo uporabimo 

iterativno, za vsak posnetek v treh iteracijah. Premaknjeni za�etni parametri ZO so 

popravljeni parametri ZO ro�no premaknjeni za 3 m po položaju (X, Y, Z) in 30’ za kotne 

vrednosti (nagib, naklon, zasuk).  

 

Tabela P. 4: Povpre�na popolnost in pravilnost algoritma za ujemanje. (Vzorec 95 posnetkov, 
tri iteracije ujemanja, za popravljene in premaknjene parametre ZO.) 

Za�etne 
vrednosti ZO 

Ujemanje 
Popolnost Pravilnost 

iteracija 1 2 3 1 2 3 
Popravljene 0,75 0,75 0,75 0,90 0,90 0,90 

Premaknjene 0,73 0,74 0,74 0,87 0,87 0,90 
 

Kvaliteta algoritma za ujemanje, podana s parametroma popolnosti in pravilnosti ujemanja, je 

visoka (tabela P.4). Za popravljene parametre ZO se popolnost in pravilnost algoritma za 

ujemanje ne zvišuje z iteracijami, saj so popravljeni parametri zelo blizu pravim vrednostim. 

Pri projekciji modela s premaknjenimi parametri ZO iterativno opazimo izboljšanje 

popolnosti in pravilnosti ujemanja zaznanih to�k z modelom. 

P.3.5   Razprava 

S podrobno študijo smo pokazali, da je izboljšanje parametrov zunanje orientacije s 

postopkom ujemanja zaznanih prese�iš�nih to�k in projiciranega 3D modela stavb u�inkovito. 
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�e za zaznane grafi�ne gradnike uporabimo »sti�ne Förstnerjeve to�ke«, je metoda manj 

u�inkovita. Zaradi poševnega kota gledanja kamere so nekateri objekti na tleh in spodnji 

robovi stavb navidezno blizu robovom streh. Posledica tega so nepravilna ujemanja modela z 

zaznanimi to�kami, kar je bolj o�itno pri Förstnerjevih to�kah. Förstnerjev operator zazna 

številne majhne objekte, medtem ko je postopek za dolo�itev prese�iš�nih to�k manj ob�utljiv 

na zna�ilne majhne to�kaste objekte na posnetku.  

 

Prostorska lo�ljivost posnetka ni enaka za vse piksle posnetka in je ve�ja v spodnjem kot v 

zgornjem delu. To velja za vse poševne posnetke zajete s kamero, ki gleda poševno naprej v 

smeri leta. Ugotovili smo, da mora obravnavana stavba na posnetku ležati v sredini, od 

spodnjega roba posnetka, do sredine glede na smer leta. Metoda je neu�inkovita, �e 

obravnavana zgradba leži ob robovih. Iz vpliva relativnega položaja zgradbe v posnetku na 

u�inkovitost metode sklepamo, da parametri NO in distorzije le� niso bili dolo�eni z dovolj 

visoko natan�nostjo v postopku kalibracije, ter da je razvita metoda ob�utljiva na te 

nenatan�nosti.  

 

Preizkus metode smo naredili s projekcijo celotnega 3D modela stavb in dvema 

podmodeloma v IR videoposnetek. Za oceno kvalitete metode ujemanja smo projiciran model 

premaknili in šele nato uporabili metodo ujemanja. Ugotovili smo, da morajo biti za�etne 

vrednosti parametrov ZO znane z natan�nostjo položajnih parametrov boljšo od 4 m in 

natan�nostjo za kotne vrednosti boljšo od 0,5º. Z meritvami DGPS je mogo�e dose�i takšno 

natan�nost merjenega položaja aero platforme (Grewal, 2007), vendar pa ostaja problem 

natan�ne dolo�itve kotnih vrednosti parametrov ZO, nagiba (roll), naklona (pitch) in zasuka 

(yaw).  

 

Z metodologijo, ki smo jo razvili je mogo�e izboljšati položaj in orientacijo snemalne naprave 

na mobilni platformi za celoten videoposnetek, za vsak trenutek zajema posnetka, pod 

pogojem, da obravnavana stavba ne leži na robu vidnega polja kamere. Neskladje 

projiciranega modela z njegovo podobo na posnetku, ki ga povzro�i vibriranje platforme 

(Kolecki, 2010), lahko zmanjšamo in tako izboljšamo tudi dolo�itev položaja teksture IR 

posnetka za posamezno zgradbo ali del zgradbe. Vendar pa metoda ni u�inkovita, �e so�asno 

obravnavamo vse stavbe 3D modela stavb.  
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P.4   ZAKLJU�EK IN NADALJNJE RAZISKAVE  

V diplomski nalogi obravnavamo popravo parametrov ZO IR kamere na mobilni platformi z 

metodami samodejne obdelave podob. Glavni namen opravljene raziskave je samodejna 

dolo�itev tekstur za strehe in fasade stavb iz IR posnetkov za teksturiranje obstoje�ega 3D 

modela stavb. Razvita metoda temelji na ujemanju »to�ke na to�ko« (point-to-point matching) 

grafi�nih gradnikov zaznanih z IR videoposnetka in 3D ži�nega modela stavb.  

 

Rezultati preizkusa metode za dane podatke in projiciran podmodel so obetajo�i. U�inkovitost 

razvite metodologije je ve� kot 90 % za uporabljene za�etne parametre ZO s položajno 

natan�nostjo vsaj 4 m in natan�nostjo kotnih vrednosti vsaj 0,5°. Parametra kvalitete, 

popolnost in pravilnost zaznanih prese�iš�nih to�k sta 88 % in 75 %. Popolnost ujemanja 

modela s prese�iš�nimi to�kami ocenjujemo na 73 % za iterativen postopek ujemanja, 

pravilnost ujemanja pa na preko 90 %. Vendar ugotavljamo, da dana metoda ni u�inkovita, �e 

obravnavamo celoten model hkrati. Možni vzroki za to so: zaznava grafi�nih gradnikov s 

premajhno natan�nostjo, lo�ljivost IR posnetkov in lastnosti IR spektra, distorzije le�, 

nezadostna natan�nost parametrov ZO, ter vpliv poševnega pogleda kamere. 

 

Pri preizkusu smo opazili pomanjkljivosti metodologije in uporabljenih vhodnih podatkov, 

zlasti 3D modela stavb. Možnosti za nadaljnje raziskavo in izboljšanje metodologije 

predlagamo v nadaljevanju. Izra�un prese�iš�nih to�k iz zaznanih ravnih robov, kot smo ga 

predlagali, lahko izboljšamo s spremembo oblike krožnega obmo�ja iskanja. Z obmo�jem 

iskanja v obliki elipse ali pravokotnika utežimo vpliv dolo�enih mejnih vrednosti za najmanjši 

in najve�ji dovoljen prese�iš�ni kot, ter oddaljenost med obravnavanima daljicama. Dodatno 

lahko zaznane daljice klasificiramo v razrede glede na dolžino in jim glede na razred, ki mu 

pripadajo dolo�imo, višjo utež v matriki uteži za izravnavo po MNK. Ujemanje med 

zaznanimi grafi�nimi gradniki in modelnimi to�kami lahko naredimo v ve� korakih, in sicer 

najprej v posnetkih z zmanjšano lo�ljivostjo in nato s polno lo�ljivostjo, ter tako pridobimo 

približne parametre ZO. Le-te lahko izboljšamo s povezavo zaznanih grafi�nih gradnikov med 

posnetki. Namesto izravnave po metodi najmanjših kvadratov lahko uporabimo metodo 

RANSAC (Fischler, 1981) in se s tem izognemo velikemu vplivu grobo pogrešenih opazovanj 

na izravnavo parametrov ZO.�
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8 APPENDIX 

Appendix A: Table with Level of Detail 0-4 of CityGML with accuracy requirements. 

Appendix B: Extraction and matching parameters for Förstner points and straight edges. 
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Appendix A: 

Table with Level of Detail 0-4 of CityGML with accuracy requirements 
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 (Adapted from CityGML, OGC 2008, p. 10 and Albert, 2003) 
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Appendix B: 

Extraction and matching parameters for Förstner points and straight edges 

 
1. Förstner points 

 
Extraction parameters – Förstner points: 
sigmaGrad: 1.0 
sigmaInt: 3.0 
sigmaPoints: 4.0 
threshInhom: 300 
threshShape: 0.1 
Gaussian smoothing is set. 
Doublets are not eliminated.  
Junction Förstner points are extracted (Area Förstner points are excluded). 
 
Matching parameter – Förstner: Search space for correspondence is circular and size of 5 
pixels.  
 
 

2. Straight edge extraction  
 

Extraction parameters - Straight edge extraction 
filter size: 9x9 px 
minimal amplitude: 18  
maximal distance: 5 px 
minimum length: 10 px 
 
Matching parameter – Straight edge extraction: Search space for correspondence is circular 
and size of 5 pixels.  
�
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